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Fourier transform infrared absorption cross-sections of pure propane (C3Hg) and propane broadened with
H, have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Trans-
mittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both
the synchrotron source and the internal glowbar source. The absorption cross-sections have been cali-
brated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be
used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exo-
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1. Introduction

Propane is one of the many small hydrocarbons found in the
Earth’s atmosphere. The main source of atmospheric propane is
fugitive emissions associated with oil and gas production with mi-
nor sources from biomass burning, oceans and volcanoes [1]. As
a constituent of natural gas, it can be used to distinguish urban
emissions from those due to oil and gas operations [2]. Although
propane does not have a large direct radiative forcing, monitor-
ing of atmospheric propane is still relevant because of its produc-
tion of CO, and tropospheric Os. In the troposphere, propane has
a relatively long lifetime (about 14 days) and is oxidized by hy-
droxyl radicals into acetone and acetaldehyde [3,4]. This leads to
the production of peroxyacetyl nitrate (PAN), which can transport
NO, molecules over large distances; NOx catalyzes the formation
of tropospheric ozone [5,6].

The C-H stretching modes of propane, centered around
2963 cm’! (3.37 um), are the most intense bands of propane
[7,8] and serendipitously, their absorption coincides with a He-Ne
laser line at 3.39 um [9]. As a result, it is possible to use He-
Ne laser absorption spectroscopy to measure properties of propane
such as its absorption coefficient [10,11] and concentration [12] in a
fuel combustion environment. Absorption cross sections of propane
at elevated temperatures and pressure have also been recorded
[13,14] for the purpose of quantifying propane in combustion en-
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gines. Recently a set of high resolution pure propane cross sections
were recorded at high temperatures [15] aimed at astronomical ap-
plications such as spectral analysis of the auroral regions of Jupiter.

The detection of propane is not just limited to Earth’s atmo-
sphere. In our Solar System, propane has been found in the atmo-
spheres of the gas giant Saturn [16,17] and its moon Titan [18,19].
Propane is formed by hydrocarbon photochemistry starting from
methane, e.g. [20]. Beyond our Solar System, gaseous propane has
not yet been detected however there is a possibility of its existence
in the atmospheres of cool brown dwarfs [21] and exoplanets as
the presence of methane [22] in these objects has already been
observed.

Propane has an equilibrium structure with C,, symmetry and
has 27 fundamental vibrational modes. Several of these vibrations
have frequencies <1500cm™! and only a few have been rotation-
ally analyzed thus far by Fourier transform infrared (FTIR) spec-
troscopy: vg (369 cm) [23], vy (921 cm!) [24], vy (745cm™)
and 2vg-vg (370 cm!) [25]. There are also two low frequency tor-
sional modes (approximately 217 cm™! and 265 cm! [26]) from the
two methyl rotors which have been analyzed using microwave and
submillimeter wave techniques [27]. At warm (even cold) tem-
peratures, the torsional levels are highly populated and result in
numerous hot bands that have appreciable intensities. These hot
bands add to the spectral congestion and complexity of propane’s
gas phase spectrum, hindering the analysis when attempting to as-
sign transitions and fit spectroscopic constants.

In the absence of accurate spectroscopic constants, absorption
cross-sections provide an alternative method of using high qual-
ity laboratory data of "heavy" molecules. Absorption cross-sections
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Table 1

Experimental conditions used for the individual scans.

1.066 kPa H, & C3Hg

4KkPa H, & G3Hs

P (Pa)®  Pes (Pa)> T (K) No. of scans P (Pa)* P (Pa)° T (K) No. of scans
26.66 26.35 208.95 340 76.79 81.78 208.95 306
31.73 30.83 23235 400 106.39 110.29 23245 300
58.40 51.82¢ 262.15 406 101.72 109.35 262.15 300
7133 67.43 291.85 344 115.86 115.87 292.35 311
13.33 kPa H, & C3Hg Pure Propane
P (Pa)* Py (Pa)> T (K) No. of scans P (Pa)* P (Pa)® T (K) No. of scans
162.65 162.01 232.45 300 11.20 7.11¢ 204.35 104
146.25 144.05 262.35 300 31.73 30.17 231.95 266
173.32 169.45 292.15 300 40.93 38.15 262.55 156
43.86 42.28 291.05 300
46.00 51.12¢ 294.75 288

2 The pressure given in these columns refers to the pressure of C3Hg used.

b Effective pressures after normalization.

¢ Although included here, these cross sections are not usable as large pressure calibrations are

required.

do not rely on accurate fits of spectroscopic parameters, rather
only physical conditions such as temperature, pressure and sam-
ple transmittance. Another advantage of absorption cross-sections
is that they are directly relatable to what is observed in substel-
lar environments such as cool brown dwarfs, exoplanets and other
planetary objects [15,28]. Spectroscopic data for propane is also
available in several databases such as HITRAN [29] and GEISA [30],
however these sources are more applicable to Earth’s atmosphere
rather than those of other planets. We present here infrared ab-
sorption cross-sections of pure, and H, broadened, propane as cold
as 200 K.

The work is part of a program to record spectra of small hydro-
carbons with H,, He and N, broadeners as needed for the analysis
of cool astronomical objects. In another experiment, spectra have
been recorded at temperatures below 200K to better match the
stratospheric temperatures of Jupiter and Saturn. In this first pa-
per, however, we present the warmer propane cross sections. We
note that temperatures above 200K can be found in the thermo-
sphere and troposphere of the giant planets as well as in auroral
regions.

2. Experimental

Propane (C3Hg) (99.99% purity) and H, (99.99% purity) were
purchased from Praxair and used without further purification and
we assume the isotopic contamination of 3C to be approximately
1.1% according to its natural abundance. Depending on the condi-
tions, either pure C3Hg (or a C3Hg-H, mixture) was used in a mul-
tipass White cell set to an optical path length of 8 m (base path
length =2 m) that was operated in a static mode [31].

The cell temperature was either left at ambient temperature
(approximately 298 K) or cooled to temperatures as low as 205K
using a NESLAB ULT-80DD refrigerated re-circulating methanol
bath [32-34]. Once the cell had reached the desired temperature,
it was left to equilibrate overnight and monitored with PT100 RTD
sensors. Fluctuations in temperature during each experiment were
+0.1 K. The spectrometer was fitted with a KBr beamsplitter and a
liquid He-cooled Ge: Cu detector was used for optimum sensitivity
between 600 - 1250 cm!. Table 1 summarizes the individual con-
ditions used for each experiment. Experiments with H, as the for-
eign broadening gas were carried out first by filling the cell with a
small amount of propane and then adding H, to reach total pres-
sures of 8 Torr (1.066 Pa), 30 Torr (4 kPa) and 100 Torr (13.33 kPa)
determined using two baratron gauges (MKS 626B13TBE up to

Table 2

Observed full-width half-maximum linewidths (FWHM) near
700 cm! for unblended lines and the resolution used to record
the spectra.

H, (kPa) Obs FWHM (cm~!)  Resolution (cm™1)
Sample Background

Pure (n/a) 0.002 0.00096 0.01536

1.066 0.01 0.005 0.04

4 0.035 0.01 0.04

13.33 0.1 0.04 0.04

1000 Torr and Micro Precision 627B11TEV1B up to 10 Torr) with es-
timated uncertainties of +0.4 Pa.

For scans with pure propane, the full resolution of the spec-
trometer was utilized (0.00096 cm™!) along with the synchrotron
radiation as the light source. For H,-broadened spectra, the res-
olution was reduced to match the increasing linewidths and the
source changed to the internal glowbar mid-IR source (Table 2).
This is because the advantages of the synchrotron source (being a
near pinpoint source, having both higher flux and higher signal-to-
noise) are lost with increasing aperture size. Furthermore, signal-
to-noise levels are increased with decreasing resolution and the ef-
ficiency of recording scans is increased. Forward and reverse pairs
of interferograms were recorded and saved as individual files be-
fore being Fourier transformed. During the Fourier transform, a
Blackman-Harris 3-Term apodization function and a zero-fill factor
of eight were used. Zero-filling serves to mitigate the picket fence
effect from the fast Fourier transform process by adding additional
data points to interpolate between the sampled points. This results
in smoother spectra with more accurate line positions, intensities
and areas.

Background spectra were recorded before and after each sam-
ple and the single channel profiles were then co-added using a
weighted average. The most suitable background was used in or-
der to obtain the final transmission spectrum.

3. Results and discussion
3.1. Cross-Sections

Fig. 1 provides a series of vertically offset C3Hg absorp-
tion cross-sections (o ¢s) broadened by approximately 1.066 kPa
(8 Torr) of H, at progressively decreasing temperatures ranging
from 292K to 209K in the 650 - 1250 cm™! region. The absorption
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Fig. 1. o¢.s (bottom four blue) and opyn. (top black trace) of C3Hg broadened by
4KkPa of H, at four different temperatures (298 K-209 K). (Color plot with online
version) “(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)”.

cross-section of C3Hg from the Pacific Northwest National Labo-
ratory (opynL) at 298K is also included for reference [35]. Pure
C3Hg, and all Hy-broadened o ¢ s were calculated from transmis-
sion spectra using Eq. (1) [7] and can be found in the supplemen-
tary data [36]:

10*kgT
oW, Tes= —§ PIB

Int(v,T) (1)

where o is the cross-section (cm? molecule™!), €' is the calibration
factor, v is the frequency (in cm™1), kg is the Boltzmann constant (J
K1), T is the temperature (K), P is the pressure (Pa), I is the optical
pathlength (m) and 7 is the transmittance at a given (v, T).

Since the C3Hg opyn. are in units of ppm™! m!, it was nec-
essary to re-calculate the opyy. in order to give consistent units
of cm? molecule! using the factor, F=9.28697 x 10716, obtained
from:

ks x T x In (10) x 10* 2)
0.101325
with T=296 K. By doing so, it is then possible to directly compare

the integrated opyy. and o s values (cm molecule!) in order to
verify the accuracy of our measurements (Eq. (3)).

F =

680cm ! 680cm™!
[ e Dpudvs [ o Tasdy 3)
970cm-1 970cm-1

The lower integration limit of 680cm™ was chosen due to
the low wavenumber cut-off of the Ge: Cu detector, whereas
the upper integration limit of 970cm™! was used as there
are no C3Hg absorption features in this region (see Fig. 1).
When integrating over the whole region (i.e. 650 - 1250cm™)
there are inconsistences between the three opyny (278, 298 and
323K) absorption cross-sections: 7.716 x 10719, 9.641 x 10"1? and
9.137 x 1071 cm? molecule™! respectively. Because of this, both the
lower and upper integration limits were restricted to achieve a
more reliable result. Furthermore, only the opyy. from the 298 K
was used as a reference for this work. This reduced integration
range gave more reliable integrated o ;s and opyy. Values and is
reflected in the Py values provided in Table 1. Almost all of the
Pegr values fall within 10% of the observed pressures during the
measurement.

1 & is used to compensate for the difficulty in accurately determining the amount
of absorbing gas by normalizing the o ¢s to the opyny values.
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Fig. 2. A section of the o¢s (292 K) (bottom four traces) and opyn. (top trace) be-
tween 920-930 cm™! with increasing H, broadening gas pressure. (Color plot with
online version) “(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)”.

A small section showing the Q-branch structure near 922 cm™!,
as a function of increasing pressure from the H, broadening gas
is presented in Fig. 2. As the amount of foreign H, broadening
gas is increased, the sharp and intense Q-branch structure broad-
ens and becomes less intense, forming a pseudo continuum. The
integrated area remains constant as the intense individual lines
broaden and merge into a weaker continuum resulting in inte-
grated o s values that are all consistent throughout all temper-
ature and pressure series. At these temperatures and high pres-
sures, overlapping ro-vibrational lines make it almost impossible
to assign transitions and accurately fit spectroscopic constants. This
further demonstrates the robust nature of using absorption cross-
sections for astronomical spectroscopy in the absence of accurate
line parameters.

4. Conclusions

Spectra of cold and ambient temperature C3Hg have been
recorded in the 650 - 1250 cm™! region. C3Hg has been measured
as a pure sample as well as broadened with varying pressures of
H,. The individual absorption cross-sections have been calculated
and calibrated to a reference cross-section obtained from the PNNL
spectroscopic database.

These cold absorption cross-sections are relevant for planetary
atmospheres, where the physical conditions and composition differ
from that of the Earth. The absence of high quality spectroscopic
line parameters necessitates the use of absorption cross sections in
the retrieval of abundances of molecules such as propane in plan-
etary atmospheres and bypass the need to assign transitions and
fit spectroscopic constants. Our absorption cross sections can be
point-by-point interpolated in both temperature and H, pressure
to obtain a suitable cross section within the laboratory measure-
ment range.

In the low frequency region of the IR, a synchrotron source is
advantageous over conventional laboratory based sources such as
a glowbar. This is especially true when taking advantage of the full
resolution of the spectrometer for samples at low pressure. Syn-
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chrotron radiation provides a near point source with high bright-
ness leading to a higher signal-to-noise ratio and thus increased
sensitivity. However, when recording spectra of high pressure sam-
ples at lower resolution, it is more efficient to use the internal
source as the synchrotron loses its brightness advantage with in-
creasing aperture size.
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