Cassini Ultraviolet Imaging Spectrograph UVIS HSP

Ring Stellar Occultation Atlas

Volume 2: Rev 031 - Rev 039

Version: 1.3
May 31, 2018

Table of Contents

The table lists all occultations in this volume, including the star name, rev number, indication of ingress (I) or egress (E), date of the occultation, duration of the occultation, radial range coverage and elevation angle of the star.

Occultations are presented chronologically in the order they were observed. To keep the file size of this atlas manageable, it is presented in multiple volumes, each one covering a subset of the occultations.

Introduction

Over the course of the Cassini mission, the High Speed Photometer (HSP) of the Ultraviolet Imaging Spectrograph (UVIS) observed 170 occultations of stars by Saturn's rings. Details on the UVIS instrument can be found in Esposito et al. $(1998,2004)$. Information on the handling of HSP ring occultation data as well as a summary of data calibration and reduction techniques for the first part of the Cassini mission are in Colwell et al. (2010). This document provides a tabular and visual overview of these stellar occultations.

Description of Data Products in the Atlas

The HSP data consist of a time series of measured photon counts. With the exception of observations of some faint stars where the background signal dominates or is a significant contribution, the measured signal is primarily due to starlight transmitted through the rings. The HSP integration times are $1,2,4$, or 8 msec . The majority of occultations used a 1 msec integration period, with most of the rest at 2 msec . In this atlas the data are binned to 1 second.

The data are shown in two plots: (1) a plot spanning the range of $70,000 \mathrm{~km}$ to $150,000 \mathrm{~km}$ from Saturn for all occultations to allow direct comparison of signal and coverage on a single distance scale; and (2) a plot that shows the data zoomed to the radial range of coverage of the occultation.

Two additional geometry plots are included for each occultation: (1) the radial ring plane resolution of the occultation (in the frame of Saturn, not accounting for ring particle motion or diffraction); and (2) the value of ϕ, an angle measured in the ring plane in the counterclockwise sense from the outward radial vector at the measurement point to the direction to the star projected into the ring plane. Thus, an observation where the look vector to the star is tangent to the rings has $\phi=90$ degrees.

On the page following the data plots, a geometry visualization is shown at a time near the middle of the occultation. The position of the UVIS HSP field of view is labeled on each of these plots. Occultations that cut a chord across the rings, are presented here as separate "Ingress" and "Egress" occultations, referring to the portion of the occultation where the observation point is approaching or receding from Saturn, respectively. Some geometry visualizations are missing and will be included in the next revision of this volume.

Document assembled by Joshua Colwell, UVIS Co-Investigator, University of Central Florida, with the assistance of Stephanie Eckert Grant, Richard Jerousek, and Tina Notrika, UCF.

References

1. Colwell, J. E., L. W. Esposito, D. Pettis, M. Sremčević, R. G. Jerousek, E. T. Bradley 2010. Cassini UVIS Stellar Occultation Observations of Saturn's Rings. Astron. J. 140, 15691578, doi:10.1088/0004-6256/140/6/1569.
2. Esposito, L. W., J. E. Colwell, and W. E. McClintock 1998. Cassini UVIS Observations of Saturn's Rings. Planet. Space Sci. 46, 1221-1235.
3. Esposito, L. W., C. A. Barth, J. E. Colwell, G. M. Lawrence, W. E. McClintock, A. I. F. Stewart, H. U. Keller, , A. Korth, H. Lauche, M. Festou, A. L. Lane, C. J. Hansen, J. N. Maki, R. A. West, H. Jahn, R. Reulke, K. Warlich, D. E. Shemansky, and Y. L. Yung 2004. The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev. 115, 299-361.

Star		Rev	Ing/Eg	Year/Day	B	¢	Radius	Duration (min)
μ	PSA	31	E	2006-306	30.4	248.1-234.8	116605-119798	111.5
μ	PSA	31	I	2006-306	30.4	284.2-248.1	144032-116605	343.3
α	ARA	32	1	2006-314	54.4	276.5-280.9	139784-61331	253.9
V	LUP	32	E	2006-313	47.4	26.3-38.2	84310-136201	117.4
Y	PEG	32	I	2006-311	-20.3	149.5-110.6	155443-103921	128.5
μ	PSA	32	E	2006-318	30.4	248.1-245.2	118449-118607	24.8
μ	PSA	32	1	2006-318	30.4	282.6-248.1	143456-118449	328
α	ARA	33	I	2006-325	54.4	276.6-280.8	145355-65875	257.7
α	VIR	34	E	2006-337	17.3	282.1-344.7	74536-160111	71.3
α	VIR	34	I	2006-337	17.3	220.9-282.1	153653-74536	67.7
η	LUP	34	E	2006-337	44.5	325.0-7.9	106848-143846	208.6
η	LUP	34	I	2006-337	44.5	286.1-325.0	135360-106848	181
α	ARA	35	E	2006-352	54.4	120.1-113.2	126866-173466	231.5
α	ARA	35	I	2006-352	54.4	252.0-221.2	130424-64855	377.1
K	CEN	35	E	2006-350	48.5	108.9-76.5	68852-146177	279.4
α	ARA	36	E	2007-004	54.4	3.3-55.5	70897-115412	420.5
α	ARA	36	1	2007-004	54.4	311.6-3.3	113951-70897	412
δ	PER	36	E	2006-364	-54	68.3-65.7	66531-140901	138.5
ε	LUP	36	E	2007-003	51	36.7-48.3	63449-148844	307.2
V	PEG	36	E	2006-363	-20.3	101.6-55.7	102295-146797	119.5
V	PEG	36	1	2006-363	-20.3	156.6-101.6	178177-102295	165.7
к	CEN	36	1	2007-002	48.5	237.8-250.0	156380-63523	305.7
δ	PER	37	1	2007-015	-54	258.2-281.1	142583-60043	187.9
ε	LUP	37	E	2007-020	51	324.8-10.9	99478-142940	363.2
ε	LUP	37	I	2007-020	51	284.8-324.8	129588-99478	293.8
V	ARA	37	E	2007-022	61	142.5-117.2	80500-155605	382.7
V	ARA	37	I	2007-022	61	251.2-245.6	147952-121466	126.5
V	GRU	37	E	2007-009	35.1	244.3-219.6	137189-150988	216.6
Y	GRU	37	I	2007-009	35.1	-1.0--1.0	147326-137189	184.5
ε	PSA	38	E	2007-027	23.7	255.1-239.1	82194-85530	43.5
ε	PSA	38	1	2007-027	23.7	299.3-255.1	114637-82194	146.9
γ	ARA	38	1	2007-041	61	218.8-212.6	93028-87182	47.7
ψ	CEN	38	1	2007-038	44.3	243.8-260.3	150171-96418	205.6
χ	CEN	39	1	2007-057	47.6	183.9-159.9	148429-98598	269.8
δ	PER	39	1	2007-049	-54	257.8-284.1	143283-55504	218.8
ε	PSA	39	E	2007-045	23.7	255.0-233.6	86909-93340	55.9
ε	PSA	39	1	2007-045	23.7	277.4-255.0	94012-86909	58.9

METHONE

ENCELADUS
DIONE
MIMAS

.TETHYS

2006-306T03:27:00.000 1714662.9 km
Target RA/dec: 327.24, -32.32
Subsolar lat/Ion: -12.47, 168.91
Sub-s/c lat/Ion: 25.54, -2.60

MU PSA Rev 031 Egress

MU PSA Rev 031 Egress

PALLENE

.TETHYS

2006-306T07:13:00.000 1722994.8 km
Target RA/dec: 328.24, - 31.57
Subsolar lat/Ion: - 12.47, 41.66
Sub-s/c lat/Ion: 24.79, -128.99

ENCELADUS

IE

MIMAS

2006-313T22:16:00.000 707484.71 km
Target RA/dec: 250.40, -49.03
Subsolar lat/lon: -12.38, -22.10
Sub-s/c lat/Ion: 49.26, 89.91

GAM LUP Rev 032 Egress

GAM LUP Rev 032 Egress

MIMAS

2006-313T19:03:00.000 639413.58 km
Target RA/dec: 241.42, -47.16
Subsolar lat/Ion: - 12.38, 86.56
Sub-s/c lat/Ion: 47.88, - 171.81

GAM PEG Rev 032 Ingress

GAM PEG Rev 032 Ingress

PALLENE

2006-311T18:45:00.000 844639.15 km
Target RA/dec: 8.99, 12.26
Subsolar lat/Ion: - 12.41, -81.78
Sub-s/c lat/Ion: -14.78, 143.63

RHEA

.TETH

2006-318T03:26:00.000 1712416.0 km
DIONE
Target RA/dec: 327.24, -32.25
Subsolar lat/Ion: -12.33, 160.36
Sub-s/c lat/Ion: 25.48, - 11.58

2006-325T20:48:00.000 697022.11 km
Target RA/dec: 249.13, -48.86
Subsolar lat/Ion: -12.24, 18.34
Sub-s/c lat/Ion: 49.17, 128.48

IAPETUS

2006-337T02:31:00.000 328063.05 km
Target RA/dec: 185.59, -8.65
Subsolar lat/Ion: -12.11, -93.14
Sub-s/c lat/Ion: 11.80, -51.85

ALP VIR Rev 034 Egress

ALP VIR Rev 034 Egress

2006-337T03:39:00.000 348974.31 km
Target RA/dec: 191.42, - 15.31
Subsolar lat/Ion: - 12.11, - 131.43
Sub-s/c lat/Ion: 17.82, -84.61

ETA LUP Rev 034 Ingress

ETA LUP Rev 034 Ingress

.DIONE

Target RA/dec: 225.65, -41.72
Subsolar lat/Ion: - 12.11, -49.56
Sub-s/c lat/Ion: 42.90, 33.13

ETA LUP Rev 034 Egress

ETA LUP Rev 034 Egress

．DIONE

2006－337T15：04：00．000 603611．84 km
Target RA／dec：236．36，-45.83
Subsolar lat／Ion：－12．11，－ 157.10
Sub－s／c lat／Ion：4末巨゙hHY®2．14

.TETHYS
.DIONE

MIMAS

2006-352T01:27:00.000 1403947.4 km
Target RA/dec: 258.01, -47.85
Subsolar lat/Ion: -11.94, 21.53
Sub-s/c lat/Ion: 47.24, 140.48

ALP ARA Rev 035 Egress

ALP ARA Rev 035 Egress

G_ARC

2006-352T16:36:00.000 1551332.9 km
Target RA/dec: 269.38, -48.33
Subsolar lat/Ion: -11.93, - 130.26
Sub-s/c lat/Ion: 46.72, 1.18

ENCELADUS

PALLENE
PROMETHELAWRMAS

2006-350T22:47:00.000 1077798.1 km
Target RA/dec: 232.10, -42.12
Subsolar lat/Ion: - $11.95,-157.63$
TETHYS
Sub-s/c lat/Ion: 42.85, -68.18

ALP ARA Rev 036 Ingress

.TETHYS

2007-004T17:48:00.000 1591729.8 km
Target RA/dec: 260.14, -51.78
Subsolar lat/Ion: -11.74, 86.30
Sub-s/c lat/Ion: 51.13, - 152.17

MIMAS
ENCELAD

2007-005T00:56:00.000 1635429.3 km
Target RA/dec: 265.47, -52.01
Subsolar lat/Ion: -11.73, -154.68
Sub-s/c lat/Ion: 50.89, -27.20
TETHYS

ENCLLADUS

2006-364T17:10:00.000 641610.70 km
Target RA/dec: 68.73, 50.44
Subsolar lat/Ion: - $11.80,-158.54$
Sub-s/c lat/lon: -50.90, 130.06

PALLENE METHONE

)NE

2007-003T11:22:00.000 1355878.4 km
Target RA/dec: 235.13, -47.15
Subsolar lat/Ion: -11.75, 34.38
Sub-s/c lat/Ion: 47.84, 126.97

2006-363T09:28:00.000 993620.14 km
Target RA/dec: 8.23, 12.94
Subsolar lat/Ion: -11.81, -167.65
Sub-s/c lat/Ion: -15.29, 55.14

DIONE

2006-363T11:47:00.000 966041.70 km
Target RA/dec: 10.12, 15.19
Subsolar lat/Ion: -11.81, 114.09
Sub-s/c lat/Ion: -17.31, -21.32

KAP CEN Rev 036 Ingress

KAP CEN Rev 036 Ingress

.DIONE

PALLENE

.TETHYS

2007-002T16:54:00.000 1172450.2 km
Target RA/dec: 218.64, -39.92
Subsolar lat/Ion: -11.76, -61.79
Sub-s/c lat/Ion: 40.78, 12.03

mETHONE

DIONE

2007-015T14:50:00.000 829382.65 km
Target RA/dec: 45.73, 46.50
Subsolar lat/Ion: -11.61, -91.86
Sub-s/c lat/Ion: -47.53, 169.56

EPS LUP Rev 037 Ingress

2007-020T15:53:00.000 1405291.4 km
Target RA/dec: 225.18, -46.25
Subsolar lat/Ion: $-11.55,138.88$
Sub-s/c lat/Ion: 47.12, - 140.50

EPS LUP Rev 037 Egress

EPS LUP Rev 037 Egress

.TETHYS

2007-020T21:20:00.000 1437722.8 km
ENCELADUS

Target RA/dec: 229.57, -48.09
Subsolar lat/Ion: - 11.55, -45.22
Sub-s/c lat/Ion: 48.96, 40.48

GAM ARA Rev 037 Ingress

GAM ARA Rev 037 Ingress

2007-022T02:05:00.000 1576339.9 km
Target RA/dec: 254.04, -53.92
Subsolar lat/Ion: - $11.53,63.56$
Sub-s/c lat/Ion: 53.91, 178.14

2007-022T17:44:00.000 1628583.1 km
Target RA/dec: 267.54, -54.66
Subsolar lat/Ion: -11.53, - 105.12
Sub-s/c lat/Ion: 53.50, 24.77

GAM GRU Rev 037 Ingress

GAM GRU Rev 037 Ingress

TETHYS

MEITMASIE

2007-009T20:36:00.000 1792295.8 km
Target RA/dec: 323.27, -36.05
Subsolar lat/Ion: -11.68, - 102.08
Sub-s/c lat/Ion: 29.26, 80.75

.TETHYS

2007-009T23:57:00.000 1781858.3 km
Target RA/dec: 324.45, -35.22
Subsolar lat/Ion: -11.68, 144.75
Sub-s/c lat/Ion: 28.40, -31.41

2007-027T14:21:00.000 1507088.2 km
Target RA/dec: 336.32, -26.90
Subsolar lat/Ion: -11.47, -84.63
Sub-s/c lat/Ion: 20.01, 108.98

TETHYS

2007-027T15:56:00.000 1499220.9 km
Target RA/dec: 336.98, -26.20
Subsolar lat/Ion: -11.47, -138.12
Sub-s/c lat/Ion: 19.36, 56.04

PALLENE

2007-041T01:14:00.000 1716622.2 km
.TETHYS
Target RA/dec: 258.93, -53.98
Subsolar lat/Ion: -11.31, 167.84
Sub-s/c lat/Ion: 53.56, -72.67

ENCELADUS

PALLENE

EPIMETHEUS PROMETHEUS

2007-037T23:47:00.000 1551827.2 km
Target RA/dec: 209.79, - 36.74
Subsolar lat/Ion: -11.35, 129.10
Sub-s/c lat/Ion: 37.48, - 167.98

.TETHYS

METHONE

PALLENE

2007-056T21:46:00.000 1672156.2 km
Target RA/dec: 211.91, - 38.11
Subsolar lat/Ion: - 11.13, -87.21
Sub-s/c lat/Ion: 38.84, -22.65

2007-049T19:24:00.000 961325.81 km
Target RA/dec: 47.24, 46.76
Subsolar lat/Ion: -11.21, -91.96
Sub-s/c lat/R鸬: $A_{47.73, ~} 170.03$

.TETHYS

DIONE

2007-045T21:42:00.000 1445866.8 km
Target RA/dec: 336.27, -26.53
Subsolar lat/Ion: -11.26, -166.60
Sub-s/c lat/Ion: 19.71, 26.28

PHOEBE
.TETHYS

ENCELADUS

DIONE

2007-045T22:39:00.000 1441147.0 km
Target RA/dec: 336.73, -26.05
Subsolar lat/Ion: $-11.26,161.30$
Sub-s/c lat/Ion: 19.25, - 5.42

