

Enceladus: Cassini Finds Another Active World

John Spencer Southwest Research Institute, Boulder

> Cassini CHARM Telecon April 24th 2007

Voyager: 1980, 1981

- Very high albedo
- Extensive tectonism, crater relaxation

Tidal Heating: Pre-Cassini Ideas

- 2:1 orbital resonance with Dione produces forced eccentricity of 0.0047 (similar to lo)
- Estimates of equilibrium tidal heating rate depend highly on interior structure: few 100 MW to many GW (Peale et al. 1980, Yoder 1981, Squyres et al. 1983, Ross and Schubert 1989...)
 - Crude long-term upper limit of ~4 GW set by the stability of the Dione resonance and estimates of the internal structure of Saturn (Ross and Schubert 1989)
- Heating by spin/orbit resonance also possible? Wisdom (2004)

"Mimas Paradox"

NASA/JPL/SSI

	Mimas	Enceladus
Diameter	420 km	504 km
Density	1.2	1.6
Distance from Saturn	3.1 R _s	3.9 R _s
Orbital Eccentricity	0.0206	0.0047
Tidal heating, solid ice rigidity, $Q = 20$	160 MW	16 MW
Slide 4		

Bistable tidal heating?

- Enceladus is warm, dissipative, stays warm.
- Mimas is cold, rigid, stays cold.

Need a way to "kick start" Enceladus initially

E-ring

- Diffuse outer ring of Saturn, discovered in 1966
- Density peak at Enceladus (Baum et al. 1980, Reitsema et al. 1980, Larson et al. 1981)
- Blue color (Larson et al. 1981, 1984)
- Haff et al. 1983: Sputtering lifetime of E-ring particles is only a few thousand years: need a continuous source at Enceladus
 - Geysers??
- Photometry implies peculiar size/frequency distribution: geyser origin? (Pang et al. 1984)

National Geographic, 1981 Slide 6

OH Torus

- Discovered by HST near the E-ring (Shemansky et al. 1993):
 - 20x more OH than expected from micrometeorites, sputtering: Need additional source (Jurac et al. 2001, 2002)

Slide 7

Richardson et al. 1998

Early Cassini Observations

- Approach to Saturn, early 2004: UVIS observations of neutral O throughout the Saturn system, complementing the OH already known
- Distant high-phase imaging in Jan., Feb. 2005 showed south polar plume: not recognized at the time
- First close Enceladus flybys in early 2005...
 - Feb 17th 2005, 1260 km altitude
 - Mar 9th 2005, 500 km altitude

Esposito et al. 2005

Porco et al. 2006

Feb. 2005 UVIS Stellar occultation

• Low latitudes: No atmospheric signature seen (Hansen et al. 2006)

Feb., Mar. 2005 Magnetometer results

• Field perturbations by a conducting barrier larger than Enceladus (Dougherty et al. 2006)

April 2005: Cassini satellite Workshop, JPL

Michelle Dougherty argues for lowering the planned 1000 km periapse of the July 2005 flyby to ~175 km to investigate more closely.

July 14 2005: Imaging on Approach

 First good view of south polar "tiger stripes"

- Distinctive terrain precisely centered on the south pole
- Bordered by scalloped scarps at ~55 S
- Tension fractures radiate northwards from the scallops
- At most, a small number of impact craters: age < 1 m.y.?

Tiger Stripe Spectrum

VIMS (Brown et al. 2006):

- Coarser grains (0.1 0.3 mm) in tiger stripes
- Ice is mostly crystalline
- No thermal emission seen

Absoption Strength

Tiger Stripe Spectrum, contd.

Stripes are also enriched in

- CO₂
- Organics

NH₃ frost not seen

CO gas also not seen (strong upper limit)

(Brown et al. 2006)

Slide 20

CIRS Thermal IR Observations

Spencer et al. (2006)

- Effective wavelength = 12 – 16 µm
- Resolution = 25 km
 South polar hot spot!
- Simple passive model cannot produce a warm pole

Location of Warm Region

- Centered on the south pole
- Corresponds closely to the "tiger stripe" fractures (rather than the larger south polar terrain)

Brightness Temperature Contours Slide 22 (Spencer et al. 2006)

Spectra with T_B > 84 K

- Heat distribution is not uniform along the tiger stripes
- The stripe closet to the south pole is the warmest, and is warmest near the south pole

Emission Variations Along Tiger Stripes

Model 2: 120 - 600 m wide zone at 135 K along all tiger stripes

- Width adjusted manually to roughly match observed emission
- Matches observations well
 - > 5-fold variations in thermal emission exist along the stripes
 Peak brightness of all four stripes is similar

Spectrum of South Polar Warm Region

Average spectrum south of 65 S

- Not consistent with a blackbody
- Best fit after subtracting expected background:
 - 345 km^2 (~1% of the surface) at 133 K
- Average ~660 m width of warm material along the 500 km tiger stripes

South Polar Radiated Power

- If all power is radiated at a single temperature
 - Radiated power south of 65 S = 5.8 ± 1.9 GW
- Additional power at lower temperatures is likely

High Resolution CIRS Observations

- Scattered "ridealong" observations at 20 – 0.6 km resolution
- Confirm localization of warm material along the tiger stripes
- Most powerful spectrum
 - $145 \pm 14 \text{ K}$

Spencer et al. (2006)

North Pole

- In darkness since 1995
- Long-wavelength CIRS observations in July 2004
 - T < ~ 33 K
 - No north polar hot spot
- Consistent with old, cratered, surface there

Putting Together the Big Picture

 Assume everything is symmetrical about the south pole Composite of 2005 Enceladus Plume Observations (assuming symmetry about the spin axis)

July 2005 UVIS Stellar Occultation

Hansen et al. (2006):

- South polar ingress: gas over the pole!
- Equatorial egress: no signature

UVIS Stellar Occultation, contd.

- H_2O absorption: 1.5 x 10¹⁶ molecules cm⁻² over the south pole
 - Most of the H₂O escapes
 - Speed ~ 400 m/sec
 - Enceladus escape velocity = 240 m/sec
 - Escape rate 120 180 kg/sec (Tian et al. 2006)
 - ~0.2 Enceladus masses in 4 b.y.! (Kargel 2006)
 - Probable source of the observed OH, O clouds

Hansen et al. (2006)

Slide 33

July 2005 INMS Observations

Ion & Neutral Mass Spectrometer: *in situ* measurements of the gas cloud (Waite et al. 2006)

• Gas composition:

- 91% H₂O, plus
- CO₂
- N₂
- CH₄
- C₂H₂, C₃H₈
- Clathrate decomposition is a plausible source (Kargel 2006)
- No ammonia!

INMS saw the most gas when Cassini was closest to the south pole

Slide 35

CDA Dust Observations

- Cosmic Dust Analyzer: Spahn et al. (2006)
- July 2005 flyby data sensitive to > 4 µm diameter particles (bigger than most E-ring particles)
- Peak dust ~1 minute before C/A

Kilometers

- Modeled dust production rate > 0.2 kg s⁻¹
 - Could be much higher, depending on size distribution
- The south polar plume is probably the dominant source of the E-ring

Composite of 2005 Enceladus Plume Observations (assuming symmetry about the spin axis)

July 2005 Magnetometer, Plasma Results

Field perturbation is strongest over the south pole (Dougherty et al. 2006)

Cassini plume images

Higher-resolution images taken in November 2005

- Confirm reality of Feb., Mar. 2006 plume detection
- Multiple plume sources
- Source locations are consistent with the tiger stripes

ISS Camera Plume Observations, contd.

Porco et al. (2006)

- Dust scale height ~30 km near the surface:
 - Mean vertical speed ~ 60 m s⁻¹
 - Much less than escape velocity, 240 m s⁻¹
 - Most particles re-impact the surface!
- More gradual falloff at higher altitudes
 - ~1% of particles escape

 Cassini trajectory skirted the edge of the plume seen by the Cassini cameras

Slide 40

VIMS Plume Spectrum

Simultaneous with November ISS images

Plume particle spectrum is very similar to E-ring: ~micron-sized ice particles

NASA/JPL/U. Arizona Slide 41

Power and Heat Flow: Implications

- Endogenic power > ~ 7 GW (including plume latent heat)
 - Approaching limits for steady-state tidal heating, given estimates of Saturn's internal properties (Ross and Schubert 1989)
 - ... or exceeds that limit by an order of magnitude (Meyer and Wisdom 2007)
 - Need a way to "kick start" tidal heating on Enceladus but not Mimas
 - Short-lived radioactive elements like Al²⁶, just after the solar system formed? (Matson and Castillo 2006)
 - Requires continuous activity since then
 - Long-term radiogenic heating (Schubert et al. 2007)
 - Requires favorable early conditions
 - Impact? (Wisdom 2004, Porco et al. 2006)
- Average south-polar heat flow is 0.15 W m⁻² (6% that of Io)
 - Near-surface temperatures of 145 K imply local heat flow of 24 W m⁻²
 - Melting at a depth of 20 m if heat is transported conductively through the ice

Particle Source?

Porco et al. (2006)

- From UVIS stellar occultation, July 2005 near-surface column density of gas
 = 7 x 10⁻⁶ kg m⁻²
- Column density of ice particles
 = 3 x 10⁻⁶ kg m⁻² ??
- Comparable gas and particle masses argue against condensation of particles from the gas
 - [Though gas:particle production mass ratio, accounting for much lower dust speed, is ~40:1]
- Entrainment of ice particles in the gas is unlikely due to likely sintering of particles by condensing vapor
- Particle production by boiling of liquid water?

Role of Clathrates?

Keiffer et al. (2006)

- ~10% abundance of gases other than H₂O in the plume requires a reservoir other than liquid water
- Plume composition is consistent with clathrates (water ice with other molecules like CO₂, N₂, trapped in the molecular structure)
- Explosive dissociation of clathrates could power the plumes?
- Vaporization of the H₂O (in addition to the more volatile gases) still requires fairly high temperatures (>190 K)

Why the South Pole?

Nimmo and Pappalardo (2006)

- Low-density silicate or ice diapir can be sufficient to overcome the equatorial bulge and reorient Enceladus
- Resulting stresses may be consistent with the observed tectonic patterns
- Few mgal gravity anomaly: might be detectable by Cassini?

Heat Production Mechanism

Heating by diurnal shear? (Nimmo et al. 2007, Nature, in press)

- Daily tidal stresses cause frictional heating along the tiger stripe fractures at depth
- Ice is vaporized, rises to the surface, mostly condenses there (heating the fractures as observed)
- Some vapor escapes, forming the plume
- Numbers seem to work...
- Ocean is required for sufficient tidal stresses

• Significant variation in heat flow along fractures?

Comparison to Observations

 Polar stripe (Baghdad) is more active than predicted by this model

November 2006 CIRS Observations

First view of the south polar terrain since July 2005

	July 14 2005	November 9 2006	
Range, km	80,000	110,000	
CIRS S. pole	23 x 32	32 x 35	
resolution, km			
Subspacecraft Latitude	46 S	68 S	
Subsolar Latitude	23 S	15 S	

November 2006

Hot Material in Cracks?

- July 2005 south polar spectra taken 44 degrees from vertical
- November 2006 spectra taken 22 degrees from vertical
 - Same temperature as more oblique July 2006 spectra
 - Little of the thermal emission is from hot material in narrow cracks

Power Variability?

- No change in total power output seen in 16 months
- Uncertainties are large, however

S. Polar Temperature Distribution

- Distribution is unchanged within S/N and calibration uncertainties
- Secondary bright region near 75 S, 165 W, is confirmed

July 2005

November 2006

Slide 52

September 2006 High-Phase Imaging

Future Observations: Prime Mission

- Next hi-res, hi-phase view of plume, April 24th 2007
- Next close flyby, March 12th 2008
 - Fly over low latitudes at 25 km altitude
 - Fly over south pole at 580 km altitude 55 seconds later
 - Remote sensing of south pole at ~10,000 km range 10 minutes later
 - Saturn eclipse: no imaging of the surface
 - CIRS mapping of thermal emission with 3 km resolution
 - VIMS search for high-T emission?
 - ISS search for non-thermal emission?

March 12 2008 Trajectory

10-second time ticks

Slide 55

Cassini Extended Mission

- Mid-2008 mid-2010
 - Tour now decided
- Enceladus is a major priority
 - 7 additional close Enceladus flybys
 - Remote Sensing Goals include
 - Imaging of tiger stripe vents at 2 4 m/pixel
 - High-phase imaging of plumes at ~30 m/pixel
 - Sampling of thermal emission and composition at ~1 km/pixel
 - More UV stellar occultations for plume composition, density mapping
 - Search for activity at other latitudes
 - In situ goals include
 - Dust grain compositions
 - Neutral gas composition with greatly improved sensitivity
 - Comparison of upstream/downstream plasma conditions
 - Determination of gravity field to assess degree of differentiation, possible local anomalies over south pole

Enceladus Flyby Summary

Date	Orbit	Speed km/s	Altitude	Orbit Inclination
12-Mar-08	61	14.3	27	High
11-Aug-08	80	17.7	21	High
9-Oct-08	88	17.7	21	High
31-Oct-08	91	17.7	200	High
2-Nov-09	120	7.7	96	Low
21-Nov-09	121	7.7	>1560	Low
28-Apr-10	130	6.5	96	Low
18-May-10	131	7	246	Low

Slide 57

Extended Mission Remote Sensing

2008/10/31

- 2-3 flybys optimized for hi-res remote sensing?
- Coverage is limited:
 - ISS color imaging at > 6 m/pix
 - VIMS compositional • maps at >500 m/pix
 - CIRS 1x10 pixel temperature profiles at >500 m/pix

m/pix

Conclusions

- A living ice world!
- Heat source is presumably tidal
 - Many questions remain
- Near-surface liquid water is plausible
 - But so are models without near-surface liquid water
- Major discoveries are still likely from Cassini
 - We ain't seen nothing yet...