History of Saturn's Rings

Larry W. Esposito LASP, University of Colorado CHARM 27 May 2008

CASSINI SPACECRAFT

Launched on October 15, 1997 from KSC

7 Year cruise on Venus-Venus-Earth-Jupiter Gravity Assist trajectory

30 June / 1 July 2004

THE SATURNIAN SYSTEM

Oseal

Saturn's "Northern Lights"

GEYSER COMPOSITION

(Waite et al. 2006; Hansen et al., 2006)

H ₂ O	91 ± 3 %mol
CO ₂	3.2 ± 0.6 %mol
N ₂	4 ± 1 %mol
CH ₄	1.6 ± 0.4 %mol
СО	< 0.9 %mol

 NH_3 , HCN, C_2H_2 , $C_3H_8 < 0.5$ % mol (*i.e.*, detected)

*Inferred from a combination of INMS and UVIS data

Cassini observations show Saturn's rings may be ancient

- Saturn's rings are made of billions of small pieces of ice orbiting Saturn, they resemble the planet-forming disks surrounding stars
- Cassini's Ultraviolet Imaging Spectrograph (UVIS) observes light reflected from Saturn's rings and watches stars pass behind the rings
- Voyager observations indicated the rings are youthful, but Cassini shows even younger ages: the range of ages is not consistent with a single event creating Saturn's rings

Saturn's rings were a 17-th century puzzle ...

The moons 'shepherd' the ring particles

COLLISIONAL CASCADE

USES UP THE RING MATERIAL TOO FAST!

UVIS finds clumps and moonlets in Saturn's F ring

- Cassini detects 13 events: temporary aggregations and one possible moonlet
- These indicate clumping of ring particles that recycles the fragments of shattered moons

Ring occultations show self-gravity wakes

- Multiple occultations provide a tomographic view of ring structures too small to be seen by the cameras
- Autocovariance indicates elongated transient clumps, as predicted in simulations
- We may have greatly underestimated ring heterogeneity, mass and age

Numerical simulations show collisions and self-gravity effects will create transient elongated trailing structures.

UVIS HSP 2D autocorrelation

Numerical simulations show a spider-web structure. The ring opacity underestimates mass of the B ring!

Ring history

- We believe Saturn's rings were created when a moon was shattered by a meteorite impact
- The pieces formed a ring around the planet
- But, the pieces can recollect to form new moons
- Which are shattered later, to form new rings, and so on...

Conclusion: Age of Saturn's rings

- Recycling allows the rings to be as old as the solar system, although continually changing
- Because the rings have more mass than previously thought, their surfaces can still be bright and icy after 4 billion years

Backup Slides

Are ancient rings possible? Regolith model for pollution:

Consider an infinite slab of depth, D

The regolith depth at time t: h(t) For a moonlet or ring particle, D corresponds to the diameter.

Markov chain simulation matches analytic test case

For an impactor size distribution that is a power law of index 3, we can solve the differential equation for *h(t)*, assuming all material is excavated:

$$h(t) = H_{max}[1 - exp(-t/T_0)]$$
$$H_{max} = H_1 a_{max}$$
$$T_0 = \frac{H_{max}}{F_G Y n \dot{X} / \rho}$$

Realistic case for Saturn

- Use Cuzzi and Estrada (1998) impactor size distribution
- Compare to Quaide and Oberbeck (1975) lunar regolith model
- Our Markov chain model result gives depth within a factor of 2 of their values for 10⁵ < t < 10⁹ years

This implies young rings?

The fractional pollution of the regolith, f_p , is given by

$$f_{\rho} = \frac{F_G \dot{M} t / \rho}{h(t)}$$

For meter -sized particles, f_p is 0.01 in 10⁸ years, a rough upper limit from ring observations at microwave

Estimating ring age from the volume pollution rate

For a ring system with surface mass density, Σ , we have

$$f_{p}(vol) = \frac{10^{-8} g/cm^{2} / year \cdot t}{\Sigma}$$

So, $f_{\rho}(\text{vol}) = 0.01$ and $\Sigma = 100 \text{g/cm}^2$ also gives t=10⁸ years, consistent with CE98

Depth [cm]

Water column density: FUV

Two occulted time records combined

Column density derived from short wavelength region of spectrum and from long wavelength region gives different but similar values

A plausible ring history

- Interactions between ring particles create temporary aggregations: wakes, clumps, moonlets
- Some grow through fortunate random events that compress, melt or rearrange their elements. Stronger, more compact objects would survive
- Growth rates require only doubling in 10⁵ years
- Ongoing recycling resets clocks and reconciles youthful features (size, color, embedded moons) with ancient rings: rings will be around a long time
- Rings can last forever through recycling

