

Space Burp: Magnetic Explosion at Saturn

Ali Sulaiman University of Iowa, USA

The Sun-Planet Connection

"Frozen-in" condition

What controls the shape and size of a magnetosphere?

Credit: Bagenal and Bartlett

Magnetic reconnection

The role of fast rotation in plasma loss

Hill et al. (2008)

Enceladus: A source of internal plasma

°100 kg of Wate group ions per second

Aurora

Saturn's Refresh Rate

Rymer et al. (2013)

The conditions at Saturn

Plasma Source		Plasma Loss	
Dayside (Dungey) reconnection	?	Nightside (Dungey) reconnection	?
Moon	\checkmark	Nightside (Vasyliunas) reconnection	?

Mass loading vs loss

- Enceladus deposits +100 kg/s of plasmas
- This is continuous
- A plasmoid has a typical volume of 10 cubic Saturn radii
- Each plasmoid ejects -62 × 10³ kg
- This amounts to ~200 plasmoids/day (every ~7 minutes) required to eject all of Enceladus' plasmas
- It was thought nightside reconnection is not frequent enough to sufficiently shed all the loaded mass.
- Other magnetospheric mechanism proposed to contribute to the mass loss

Microphysics of reconnection: First detection of the diffusion region at Saturn

68

ti

- Mass of proton = ~ 1800 mass of electron
- Protons become demagnetized first.. then electrons
- The consequence \rightarrow Hall fields

Arridge et al. (2016)

Long duration magnetic reconnection

- Reconnection lasted for 19h (approx. two rotations of Saturn)
- The estimated mass loss from this was -3×10^7 kg
- This is 3 orders of magnitude (~1000 times) more than previously estimated
- An event as such every 4-40 days is required to shed all of Enceladus' plasma instead of every 7 minutes
- Hence magnetotail reconnection can act as a very significant loss mechanism in a fast rotating planet

Much wider implications

- Over 300 hot Jupiter-like planets discovered
- We not have a better understanding of how these systems behave

Summary

- Nightside reconnection can be explosive at Saturn
- The ejected plasma has been estimated to be enormous and can provide the required mass loss to balance Enceladus' continuous outgassing
- A new and important result for fast-rotating magnetospheres as well as reconnection physics