
Cube Generator

Introduction

 Cube Generator (CG) is an IDL widget to read and process raw Cassini UVIS
data files, and combine the processed data with geometric parameters as calculated by
Josh Colwell’s Geometer Engine into an Image Cube for use in further investigations.
Users are given a variety of options regarding the processing of the data and geometer
options.

This document provides a reference and tutorial for new users to CG. After a brief
introduction and comments regarding the installation and compiling of CG, the tutorial is
written in the order a typical user would use to create an image cube from raw data.

Installation

 All the necessary files needed to run CG are available from the UVIS team
website individually or as a zip file. Unzip, or save, all the included files to a single
directory. Cube Generator will look for the files it needs locally. Many of the files within
the CG package a either modified or unmodified versions of code written by other
members of the UVIS science team. They have been renamed to avoid confusion or
conflict with previously extant code.

The Interface

 Cube Generator requires at least IDL 5.5 and the ICY spice interface, available
from ftp://naif.jpl.nasa.gov/pub/naif/toolkit/IDL/. If the user’s IDL installation can
successfully run Geometer, it will also run CG.
 To run CG, compile and run cube_generator.pro, either from the command line
or via the IDL development environment. If successful, the following widget will be
realized (Figure 1).

 Figure 1: Base level menu for Cube Generator.

 On the left half of the widget, a series of inputs and menu buttons provide access
to the various options that will be discussed in detail in the rest of this document. The text
block on the right will update as the widget is used with confirmation and status
messages for the user. When the image cube is created, it will also contain a running
summary of program steps, status messages, and any errors that may occur.

Raw Data Input

 A user may input raw data in two ways, either as a single data file from DAPS or
as a list of files that will be combined to form a single output cube (as in the case of an
observation that has been split into multiple raw data files). To create an image cube from
a single data file, simply click on the ‘Input Single File’ button. A file selection dialog
will open allowing the user to navigate to where the file is save on their computer and
select it for input.

In the case of an observation that consists of more than one raw file, the user will
select the ‘Input Batch File’ button. The program is asking for a text file that lists the
names of all the data files to be combined into a single cube in the order they are listed in
the file. Cube Generator does not sort files should they be listed out of temporal order,
though such an instance would not impact the validity of the associated geometric data.

Currently, the only option for entering a series of data files for batch mode is in
the form of a text file. Future revisions of the code will allow a multiple file selection
dialog that would eliminate the intermediate text file. Concurrent with this planned
update is the inclusion of a sorting algorithm to ensure that multiple raw files are
combined in sequence in the output cube.

Output Formats

 Selecting the ‘Output Formats’ button will change the menu options on the left
half of the Cube Generator widget as follows.

 Figure 2: File Output options menu

 Users have the option of outputting the image cube in three basic formats; ‘Envi’,
‘IDL_SAV’, and ‘Binary’. The default setting an IDL save file (IDL_SAV) which will
save the cube as an IDL structure that can be restored at a later time for further use. If the
IDL_SAV output format is selected, there is a further option of the ‘Original’ or
‘Improved’ file format. The ‘Original’ format is included for those users who have
already written code that accepts image cubes. The ‘Improved’ format was designed by
Josh Colwell to eliminate the need to reset an IDL session after the creation of each cube
due to changing structure dimensions. It is strongly suggested that users create cubes
in the ‘Improved’ format. For further details on the structure of both the ‘Original’ and
‘Improved’ save file formats, see Appendix 1 at the end of the document.
 The ‘ENVI’ output format creates an image cube and associated header that can
be read by the ENVI image processing package. ENVI is an IDL extension that must be
purchased separately from ITT.
 Finally, the ‘Binary’ output format is simply a binary array of double float values.
Note that there is no information in the Binary format to inform a user as to the
dimensions of the included data. Frankly, this format is included for completeness sake
and I’ve never heard of anyone using it.

 The ‘Output File’ button will open a selection dialog that allows the user to select
the name and location where the image cube will be written.
 When the user has selected the output format and file names, press return to
change the menu back to the base screen (Figure 1).

Main Menu Options

 Back at the base level menu, the user has a few options that relate to the
calculation of the geometric parameters or the processing of the raw data. These options
are generally left at their default state, though some special cases may require their
modification.
 First, the boxed sub-menu labeled ‘Aberation’. This option affects how Geometer
will calculate the geometric parameters. The default setting of ‘LT’ commands geometer
to calculate the state variables as corrected for light-time. ‘None’ does not correct for
light-time and ‘LT+S’ corrects for light-time and stellar aberrations. For many
observations, the difference between aberration states would likely be negligible.
However, given the possible non-negligible effect on some calculations, the ‘LT’
correction is set as default.
 Next, below the aberration selection menu is a check-box to enable correction for
RTG noise. If selected, the text box will become active and, if the user chooses, a new
RTG noise value may be entered. Cube Generator will subtract from each pixel an RTG
noise level based on this value and the integration length of each observation record. If a
new RTG correction value is entered, the user MUST press return for IDL to record
the new value.
 To the right of the RTG dialog lies another check-box labeled ‘Override Kernel
Check?’. If selected, this will force CG to continue and make an image cube despite
errors from the called SPICE routines that indicate insufficient kernel data to calculate

geometric information. Generally, it is in the users interest to allow C-kernel errors to
interrupt CG, however there are some cases in which an error may be ignored.
 Below the RTG sub-menu is a pull down ‘Target Name’ menu, as shown in
Figure 3. The user is required to manually select the Target relative to which Geometer
will calculate the relevant parameters. If no target is selected (or the Ra/Dec target is
selected without changing the values to the right), CG will declare an error and interrupt
the image cube creation process. If the user wants to calculate parameters relative to a
fixed Ra/Dec value, select Ra/Dec as the target and modify the values to the right of the
pull down menu (remembering to hit return in each field to register the changes with
IDL).

 Figure 3: Target Name pull-down menu.

Flatfielding Options

 For general use, this menu (Figure 4) will not need to be accessed. The default
setting will process the raw data according to the team-sponsored procedure, as
determined at the January 2007 team meeting and highlighted in Figure 4 as the Red
processing pathway. The default processing scheme corrects the raw data by the
following steps.

1. Calibration using 1999 calibration data with 0.91
multiplicative modifier.

2. Apply Bill McClintock Red Patch (for FUV data only).
3. Apply Andrew Steffl (AJS) Not-a-Number (NaN) flatfield

with 1.05 multiplicative modifier.
4. Interpolate across NaN evil pixel gaps.
5. Export corrected data.

Figure 4: FUV and EUV processing pathways and options. The Red pathway is the
default ‘team-sponsored’ approach.

As discussed at the team meeting, this is the officially sponsored processing

pipeline for the processing of UVIS data products. Should a user want to eliminate of
modify any of the steps above, the Ala Carte menu exists to allow flexibility and is
accessed by deselecting the ‘Full Flatfielding Routine’, Figure 5

.

 Figure 5: Flatfielding Processing Menu

 The Ala Carte flatfielding menu allows the user to select which ground calibration
to apply, 1997, 1999, 2003, or 2004, whether to apply the Red Patch, how to handle
NaN’s, and which flatfield to use. The calibration and flatfields both have the
multiplicative modifiers applied to them.

 Some options within the Ala Carte menu preclude other selections. For instance,
selection of the “No NaNs (Ian Stewart)” flatfield will override the user’s selection of a
‘NaN Handling Approach’ as those selections no longer have any meaning. Similarly,
choosing to apply no calibration will automatically disable the FUV Red Patch,
regardless of whether the patch was selected to be applied by the user from the
Flatfielding menu.
 Each of the choices under the ‘Calibration Choice’ refer to the year of a lab
calibration. If the 1999 lab calibration (the default setting) is selected, and the inputted
data set is an FUV observation, the derived correction factor of 0.91 is applied
automatically. Selection of any of the other calibrations WILL NOT have a correction
factor applied.

 If the user checks the box next to the ‘Override all Options?’ label, NO
calibrations or flatfields will be applied to the data. The output in this case would be
simply raw data and the geometric information.

SPICE Kernels

 The SPICE Kernel Options menu (Figure 6) provides a series of tools to manage
the SPICE kernels accessed by Geometer to calculate the geometric parameters included
in the image cube. SPICE kernels loaded into memory via the ICY routines stay resident
in memory until IDL is shut down. Resetting the IDL session DOES NOT clear SPICE
kernels from memory. Thus, when processing a large number of files, it is possible to
have many, and possibly conflicting, kernels loaded.
 The first option in this menu will list all the SPICE kernels currently in memory
in the right hand text box. This is useful for when CG aborts due to a C-kernel error.
Examining the loaded kernels may identify the missing kernel.
 To load a single kernel into memory, user the ‘Load a Kernel’ button. A file
selection dialog will open and, if successful, the Processing Status box will confirm
loading of the kernel.
 The user may also load a series of kernels simultaneously via the ‘Load Kernel
Batch’ button. Similar to the batch loading function for raw data files, this batch load
asks for a text file that contains the paths and names of the desired kernels. And, as with
the single kernel file loading option, a successful operation will be indicated in the status
box.
 Finally, the ‘Unload All Kernels’ button will force IDL to clear all SPICE kernels
from memory. If you are concerned that the wrong kernel might be used to calculate the
geometry, use this to clear memory and then re-load the specific kernels you want to use.

 Figure 6: SPICE Kernel Options menu.

 A quick note about the loading of SPICE kernels. The ICY interface requires that
the first kernel in memory be the leap second correction kernel (LSK). Thus, when
loading, make sure that is either the first loaded or the first entry in the text batch file. In
addition, the latest loaded SPICE kernels take precedence. Thus, if two kernels are loaded
that cover overlapping times, the latter will be used to calculate state variables. The user
should use the ‘List Loaded Kernel’ and ‘Unload All Kernels’ functions to ensure kernels
are loaded in the right order for the appropriate data file.

Cube Creation

 Finally, once all the variables and options have been set as above, pressing the
‘Create’ button creates the image cube. As the code runs, the ‘Processing Status’ box will
update. If there are any errors during processing, an appropriate message will be
displayed and instruct the user in how to correct the problem. On success, the output file
location and dimensions will be displayed.

Final Menu Options

 At the base level menu, there are two final buttons that haven’t been described.
Both are so self-explanatory that they shouldn’t require any mention, but to be insanely
complete, a few words.
 ‘Help’ opens an abridged version of this document within the widget framework
for quick reference as needed.
 ‘Exit’ exits.

Appendix 1: Image Cube Format and Description

 Improved Image Cube IDL save file format.

 This new Cube format was suggested by Josh Colwell to

eliminate the need to reset IDL sessions when changing from one
data set to another. Files saved in this format are larger than the
previous version, sometimes by a factor of 2 or 3, so if disk size is
an issue, use the old version instead.

 To avoid confusion, the new format structure is named
‘Datastruct2’ with the following named fields. The new fields at the
end of the structure identify which data values in the uvis field are
valid. All unused array indices are filled with a non-physical value
(-1).

 Field Name Data Source

 UVIS
 Pixel_Center_RA data.ra_full(0,*)
 Pixel_Lower_Left_RA data.ra_full(1,*)
 Pixel_Upper_Left_RA data.ra_full(2.*)
 Pixel_Upper_Right_RA data.ra_full(3,*)
 Pixel_Lower_Right_RA data.ra_full(4,*)
 Pixel_Center_Declination data.dec_full(0,*)

 Pixel_Lower_Left_Declination data.dec_full(1,*)
 Pixel_Upper_Left_Declination data.dec_full(2.*)
 Pixel_Upper_Right_Declination data.dec_full(3,*)
 Pixel_Lower_Right_Declination data.dec_full(4,*)
 Pixel_Center_Latitude data.lat_full(0,*)
 Pixel_Lower_Left_Latitude data.lat_full(1,*)
 Pixel_Upper_Left_Latitude data.lat_full(2.*)
 Pixel_Upper_Right_Latitude data.lat_full(3,*)
 Pixel_Lower_Right_Latitude data.lat_full(4,*)
 Pixel_Center_Longitude data.lon_full(0,*)
 Pixel_Lower_Left_Longitude data.lon_full(1,*)
 Pixel_Upper_Left_Longitude data.lon_full(2.*)
 Pixel_Upper_Right_Longitude data.lon_full(3,*)
 Pixel_Lower_Right_Longitude data.lon_full(4,*)

 Pixel_Center_Incidence_Angle data.incidence
 Pixel_Center_Emission_Angle data.emission
 Pixel_Center_Phase_Angle data.phase
 Pixel_Center_Rayheight data.rayheight
 Pixel_Center_Occultation_Latitude data.latocc
 Pixel_Center_Occultation_Longitude data.lonocc
 Pixel_Center_Line_of_Sight_Distance data.losdist
 Sub_Spacecraft_Longitude data.subsclon
 Sub_Spacecraft_Latitude data.subsclat
 Sub_Solar_Longitude data.subsolarlon

 Sub_Solar_Latitude data.subsolarlat
 Spacecraft_Altitude data.alt
 Target_Right_Ascension data.ratarg
 Target_Declination data.dectarg
 Target_Phase_Angle data.phasetarg
 Target_Incidence_Angle data.incidencetarg
 Target_Emission_Angle data.emissiontarg
 Spacecraft_Location_X data.scloc(0)
 Spacecraft_Location_Y data.scloc(1)
 Spacecraft_Location_Z data.scloc(2)
 Spacecraft_Velocity_X data.scvel(0)
 Spacecraft_Velocity_Y data.scvel(1)
 Spacecraft_Velocity_Z data.scvel(2)
 ET data.et
 Center_Ring_Plane_Radii data.rrad_full(0)
 Lower_Left_Ring_Plane_Radii data.rrad_full(1)
 Upper_Left_Plane_Radii data.rrad_full(2)
 Upper_Right_Plane_Radii data.rrad_full(3)
 Lower_Right_Plane_Radii data.rrad_full(4)
 UTC Integration Mid-Point Time
 Kernels All Kernels in Memory
 Xbin Spectral Binning Factor
 Ybin Spatial Binning Factor
 Xmin Upper Reft Spectral Index
 Xmax Lower Right Spectral Index
 Ymin Upper Left Spatial Index
 Ymax Lower Right Spatial Index

