

Science Planning & Sequence Team

SATURN TARGET WORKING TEAM

Rev 212 Segment Legacy Package

Segment Boundary: February 9, 2015 – February 11, 2015 2015-040T00:06:00 – 2015-042T23:51:00 (SCET)

Integration Began 05/12/2014 Segment Delivered to S87 Sequence 06/26/2014 Lead Integrator was Kathleen Kelleher

Legacy Package Assembled by Kathleen Kelleher

Table of Contents

•	Seg	ment Overview and Final Products	3 - 10
	_	Summary	4
	_	Final Sequenced SPASS (Science Planning Attitude Strategy Spreadsheet)	5
	_	Final Sequenced SMT (SSR Management Tool) Reports	6
	_	Segment Geometry	7 – 8
		Overview	7 - 8
		Solar Geometry ORS Boresight Concerns	9
	-	Daily Science Highlights	10
•	Seg	ment Integration Planning	11 - 18
	_	Timeline Gaps & Suggested Observations	12
	_	Initial SMT (SSR Management Tool) Reports	13 - 14
	_	Waypoint Selection	15 - 16
		Options Considered	15
		Waypoints Chosen	16
	_	Sequence handoff Notes & Liens on sequence development/execution	17 - 18

Segment Overview and Final Products

- Saturn 212 was a nearly 3 days long periapse segment in S87 near the end of the first inclined phase (IN-1) of the Solstice Mission.
- The timeline was filled primarily with typical periapse activities, such as VIMS Saturn Global mapping, a VIMS ring occultation, and CIRS-led composition and mapping.
- Other special periapse observations included UVIS Saturn thermosphere imaging and an ISS Regional map of Rhea. ISS also performed a close-in observation of the D-Ring.
- In addition, ISS performed a Titan Cloud Monitoring observation
- Three separate waypoints were chosen for the brief segment to avoid flight rule violations and the use of the RBOT (reaction wheel) friendly attitude was compatible with science.

Final Sequenced SPASS

	Request	Riders	Start (SCET)	Start (Epoch) Do	uration	End	Primary	Secondary	Comments
	Sequence S87, length = 67 days		2014-351T03:15:00	06	66T13:37:00	2015-052T16:52:00			
	SATURN_212 Segment		2015-040T00:06:00	00	02T23:45:00	2015-042T23:51:00			
	SP_212SA_WAYPTTURN040_PRIME		2015-040T00:06:00	00	DOT00:40:00	2015-040T00:46:00	ISS_NAC to Saturn	POS_Z to NSP	coming from XBand to Earth, NEG_Y to SA (0,0, -9.5)
-	NEW WAYPOINT		2015-040T00:46:00	00	D0T14:20:00	2015-040T15:06:00	ISS_NAC to Saturn	POS_Z to NSP	
	VIMS_212SA_NHEMMAP001_PRIME	C, I, U	2015-040T00:46:00	00	DOT10:30:00	2015-040T11:16:00	ISS_NAC to Saturn	POS_Z to NSP	
۳Ľ	UVIS_212SA_THERMOSPH001_PRIME		2015-040T11:16:00	00	00:00:00	2015-040T14:16:00	ISS_NAC to Saturn	POS_Z to NSP	
-	SP_212EA_DLTURN040_PRIME		2015-040T14:26:00	00	DOTOO:40:00	2015-040T15:06:00	XBAND to Earth	NEG_X to 31.7/-8.1	OTP. ptg from DLWG for MIMI. CIRS heating
01	NEW WAYPOINT		2015-040T15:06:00	00	00T09:40:00	2015-041T00:46:00	XBAND to Earth	NEG_X to 31.7/-8.1	
	SP_212EA_C34HEFOTP040_PRIME	C, E, N	2015-040T15:06:00	00	00:00:00	2015-041T00:06:00	XBAND to Earth	4_Hr_Rolling	MIMI. OTP. CIRS heating
ਫ਼	SP_212SA_WAYPTTURN041_PRIME		2015-041T00:06:00	oc	DOTOO:40:00	2015-041T00:46:00	ISS_NAC to Saturn	NEG_X to NSP	
U	NEW WAYPOINT	_	2015-041T00:46:00	00	00T14:20:00	2015-041T15:06:00	ISS_NAC to Saturn	NEG_X to NSP	
-	ISS_212TI_M60R2CLD041_PRIME	C, V	2015-041T00:46:00	E212_M60R2CLD041+000T00:00:00 00	DOT01:30:00	2015-041T02:16:00	ISS_NAC to Titan	NEG_X to NSP	No Preference to secondary pointing
3	ISS_212RH_REGMAP001_PIE	C, M, U, V	2015-041T03:00:00	00	DOT05:30:00	2015-041T08:30:00	ISS_NAC to Rhea	NEG_X to NSP	Collaborative Rider(s): CIRS, UVIS
→	VIMS_212SA_SHEMMAP001_PRIME	C, I, U	2015-041T08:30:00	oc	DOT02:00:00	2015-041T10:30:00	ISS_NAC to Saturn	NEG_X to NSP	
8	VIMS_212RI_ALPHEROCC002_PRIME	с	2015-041T10:30:00	00	DOT01:10:00	2015-041T11:40:00	VIMS_IR to 258.662/14.39	NEG_X to NSP	No Preference to secondary pointing
0	VIMS_212SA_SHEMMAP002_PRIME	C, I, U	2015-041T11:40:00	00	00T02:45:00	2015-041T14:25:00	ISS_NAC to Saturn	NEG_X to NSP	
	SP_212EA_DLTURN041_PRIME		2015-041T14:26:00	00	DOT00:40:00	2015-041T15:06:00	XBAND to Earth	NEG_X to 31.7/-8.1	OTB. Ptg from DLWG for MIMI. CIRS heating, SID suspend.
	NEW WAYPOINT		2015-041T15:06:00	00	DOT09:40:00	2015-042T00:46:00	XBAND to Earth	NEG_X to 31.7/-8.1	
	SP_212EA_C70METOTB041_PRIME	C, N	2015-041T15:06:00	00	00:00:00	2015-042T00:06:00	XBAND to Earth	NEG_X to 31.7/-8.1	MIMI. same as OTP pass. OTB. SID suspend. CIRS heating
	Periapse R = 6.887 Rs, lat		2015-041T17:16:45	00	DOT00:00:01	2015-041T17:16:46			
	SP_212SA_WAYPTTURN042_PRIME		2015-042T00:06:00	00	DOT00:40:00	2015-042T00:46:00	ISS_NAC to Saturn	NEG_Z to NSP	
	NEW WAYPOINT		2015-042T00:46:00	00	00T12:35:00	2015-042T13:21:00	ISS_NAC to Saturn	NEG_Z to NSP	
• ₽	CIRS_212SA_COMPSIT008_PRIME	U, V	2015-042T00:46:00	oc	00T09:54:00	2015-042T10:40:00	CIRS_FP3 to Saturn	NEG_Z to NSP	Collaborative Rider(s): UVIS. sit on left illuminated limb on Equator. Collab with UVIS.
B	ISS 212RI DRCLOSE001 PIE	C. U. V	2015-042T10:40:00	00	00T02:00:00	2015-042T12:40:00	ISS NAC to Rings	NEG Z to NSP	Collaborative Rider(s): UVIS. No Preference to secondary pointing
	SP 212EA DLTURN042 PRIME		2015-042T12:41:00	00	DOT00:40:00	2015-042T13:21:00	XBAND to Earth	NEG Y to 118.0/-0.8	ptg from DLWG for MIMI. Pre-TOST flyby. CIRS heating
	NEW WAYPOINT		2015-042T13:21:00	00	00T11:10:00	2015-043T00:3 <u>1:00</u>	XBAND to Earth	NEG Y to 118.0/-0.8	
	SP 212EA YGAP042 PRIME		2015-042T13:21:00	00	DOT01:30:00	2015-042T14:51:00	XBAND to Earth	NEG Y to 118.0/-0.8	
	SP_212EA_C70METSEQ042_PRIME	с	2015-042T14:51:00	00	00:00:00	2015-042T23:51:00	XBAND to Earth	NEG_Y to 118.0/-0.8	MIMI. pre-TOST flyby. CIRS heating

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

				OBSERVATION_PERIOD							DOWNLINK_PASS									
						P4			P5	RECO	RDED			PLAYB	 АСК					
DOWNLINK PASS NAME	Start	End	START	SCI	HK+E	TOTAL	CPACTY	MRGN	OPNAV	SCI	ENGR	TOTAL	CPACTY	MARGN	NET_M	IARGN	CAROVR			
	doy hh:mm	doy hh:mm	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(%)	(Mb)			
SP_212EA_C34BWGOTP040_PRIME	040 15:06	041 00:06	0	1067	63	1131	3322	2191	0	199	53	1383	585	-798	66	1%	798			
SP_212EA_C70METOTB041_PRIME	041 15:06	041 23:56	798	2391	63	3252	3322	70	0	205	52	3509	3240	-270	66	0%	269			
SP_212EA_C70METSEQ042_PRIME	042 14:51	042 21:46	269	2068	63	2400	3322	922	0	150	41	2591	2572	-20	66	1%	19			

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Event	Start doy hh:mm	End doy hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR SP_212EA_C34BWGOTP040_PRIME DAILY TOTAL SCIENCE	040 00:06 040 15:06 040 00:06	040 15:06 041 00:06 041 00:06	0.0 0.0 0.0	28.3 17.0 45.3	75.6 86.4 162.0	5.4 3.2 8.6	300.0 0.0 300.0	26.7 16.0 42.7	45.9 27.5 73.4	0.0 0.0 0.0	70.6 42.1 112.7	105.3 4.9 110.2	400.0 0.0 400.0	0.0 0.0 0.0	62.7 0.0 62.7	1120.5 197.2
OBSERVATION_NOR SP_212EA_C70METOTB041_PRIME DAILY TOTAL SCIENCE	041 00:06 041 15:06 041 00:06	041 15:06 041 23:56 041 23:56	0.0 0.0 0.0	118.5 16.7 135.2	151.8 84.6 236.4	5.4 13.2 18.6	713.5 0.0 713.5	26.7 15.7 42.4	45.9 27.0 72.9	0.0 0.0 0.0	415.8 41.3 457.1	271.4 4.8 276.3	620.0 0.0 620.0	0.0 0.0 0.0	62.7 0.0 62.7	2431.7 203.4
OBSERVATION_NOR SP_212EA_C70METSEQ042_PRIME DAILY TOTAL SCIENCE	041 23:56 042 14:51 041 23:56	042 14:51 042 21:46 042 21:46	0.0 0.0 0.0	28.1 13.0 41.2	160.2 63.9 224.1	5.4 2.5 7.9	300.0 0.0 300.0	26.5 12.3 38.8	45.6 21.2 66.8	0.0 0.0 0.0	1166.5 32.4 1198.9	36.3 3.8 40.1	280.0 0.0 280.0	0.0 0.0 0.0	62.3 0.0 62.3	2111.1 149.1

Segment Geometry (1 of 2)

Beginning Periapse

View of SAN 2015 FEB 0 14.1° field	URN fro 09 00.00 of view	CASSINI 5:00 UTC			1 1)	MR	Nev 212 1B 2015 - 040 2015 FFB 05 Apoapse_21 Periapse_21 Light time: Orbit peric Radius 1 Rad_cyl 1 2_ht_cyl Mag_L Semi_axs 1 Eccentricit Inclination Sun_range Earth_range DSN ELE Goldstone Canberra	BOOND TOOLOGE: 0 01:30: 2 + 014: 2 - 001: 84 84 114321 1 072615 1 302008 1 19 939354 1 939354 1 939354 1 9 9 9 10 2 + 00 19 939354 1 9 2 - 00 19 19 10 2 - 00 2 - 00 19 19 2 - 00 2 - 00 19 19 2 - 00 2 - 00 19 2 - 00 2	00 SCET 00 SCET 25 ERT 705:24:1 717:10:4 4 min 9 days km km 96 13 deg 96 AU 15 AU 15 - U/I 2 -34.6 6 62.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.4 15 17.80 Rs 5.01 Rs 32.18 Rs 5 1
Solar Syste Point NEC	m Simu _Y ;	Ram Inter v4.0	RN	t and al	ign POS	x :	SAT SEP = Up	TURN +	with	NSP		\$	FOW RA DEC Crosses_RP EPS SEP ORS b/s ang ORS rad ang	K DIREC 14. 174. -11. 0. 5. 75. 14. 174. -11. 174. -11. 174. -11.	FION INE 1 deg 2 475 deg 287 deg 200 Rs 514 deg 888 deg 8 deg 6 deg	°O 145.5 mra∙ *
User vector -	RA: -1	78.889	Tilt L	Up		lt R	Zoor	n Out	۱ 🗆 🗹	abels	🗹 Axe	s	Year 🖪		4 Þ	Hour
C	DEC: -	33.362	Left	Reset	t Rig	ght	Fill S	creen		Orbits	Vec	tors	Month		4 1	Minute
Paste C	urrent R	A/DEC	🗹 Ima	ge Dowr	п 🗹 н	li Res	Zoo	m In	🗹 FOV	s	🗌 Lat/	lons	Day 🖪		4 1	Second
Turn analyzer	r: SATU	IRN	to E	ARTH	¢ at	out Z	٠)	on RWA	. ;	;) =	11.5 mir	n / 114.	5 deg	Event	4 >)
BODY	S/C S# OCC? OC	NTRA CC? (km)	NGE (Rs)	ALTI1 (km)	TUDE(Rs)	PHASE (deg)	ANGLR_ (deg	DIAMETER mrad)	SUB_ LON	_s/c LAT	ALON (deg)	VREL (km/s)	Z_HGHT (km)	ANC	ILEF EARTH	ROM RAM
SATURN		- 1114321	18.49	1054471	17.50	60.1	6.20	108.22	15	16	0	7.0	0	0.0	114.5	16.2
MIMAS		- 1237106	20.53	1236904	20.52	66.8	0.02	0.34	314	13	-129	15.3	-4630	6.8	107.8	22.4
TETUYC		- 1292620	21.45	1292366	21.44	54.0	0.02	0.40	41	14	137	19.3	-38	7.6	120.5	13.2
DIONE		997605	16.55	007044	16 54	40.9	0.05	1 13	00	18	61	13.6	-1/50	19.1	133.6	0.6
RHEA		- B12109	13.47	811346	13.46	34.0	0.11	1.89	115	22	40	10.6	-1139	26.2	140.7	12.3
TITAN		- 2289083	37.98	2286508	37.94	75.8	0.13	2.25	345	8	-154	10.1	6695	16.0	98.7	32.1
HYPERION		- 2601393	43.16	2601244	43.16	59.4	0.01	0.13	171	-32	172	11.0	1872	10.1	115.0	20.7
IAPETUS		- 3184837	52.84	3184090	52.83	152.3	0.03	0.47	344	8	-67	4.8	569283	96.4	24.6	109.6
PHOEBE		- 13313354	220.90	13313242	220.90	53.6	0.00	0.02	140	18	166	6.0	-199879	18.4	120.4	23.1
SATURN		- 1114321	18.49	1054471	17.50	60.1	6.20	108.22	15	16	0	7.0	0	0.0	114.5	16.2

				Turn analyz
	Saturn Range	Phase Angle	Sub-S/C Lat.	BODY SATURN
Segment Start	18.5 R _{Sat}	60.1 [°]	16° N	MIMAS ENCELADUS TETHIS DIONE RHEA
Periapse	6.89 R _{Sat}	62.1 [°]	16° S	TITAN HYPERION IAPETUS PHOEBE
Segment End	15.15 R _{Sat}	149.1 [°]	5° S	SATURN

1.01

0.35

0.02 48 15 26 9.3

7.57

3.32 138 -10

0.43 288 -61

9

61 -5 0 8.0

- 4 -114 17.6

-1 138 8.6

0 -14

20 3.8

-0 5.9

-14

Saturn 212 Legacy

25 18.1

-2034

-2023

-19993

739433

13625

0

51.9 160.6

24.3 16.1 139.4

160.5 130.3 9.3

147.2 150.1 40.8

33.9 13.8 130.8

150.9 116.6 22.6

0.0 36.1 159.4

-------1118129

-- --

-- --

-- --

-- --

-- --

18.55

7.66

5.74

70.18

191.22

912933 15.15

461764

345724

761289 12.63

4229871

-- 11524483

1117567

460999

343149

761176

852716

4229124

11524371

18.54 133.6 0.06

7.65 166.4 0.19

5.69 45.5 0.85 14.90

12.63 29.5 0.02

70.17 165.0 0.02

14.15 149.1

57.5

191.22

Segment Geometry (2 of 2)

Saturn 212 Legacy

Rev 212 OUTBOUND FEB 10 17:16;45 UTC NGP 2015 - 041T17:16:45 SCET field of view 2015 FEB 10 17:16:45 SCET 2015 FEB 10 18:40:57 ERT User Apoapse__212 + 015T22:34:44 Periapse_212 + 00:00:04 Light time: 84.2 min Orbit period: 32.0 days 6.89 Bs Radius 415530 km Rad_cyl 398663 km 6.61 Rs Z_ht_cyl -117190 km -1.94 Rs 7.49 Mag L Semi axs 1942848 km 32.24 Rs Eccentricity 0.786 Inclination 19.12 deg Sun_range 9.96 AU Earth range 10.13 AU --- DSN ELEV -- D/L -- U/L ------Goldstone 10.4 32.6 Canberra 56.8 22.8 Madrid -67.9 -43.7 ENCELAD ----- LOOK DIRECTION INFO -----SATURN FOV 39.6 deg 691.5 mrad RA -72.551 deg DEC 19.020 deg Crosses_RP_@ 0.000 Rs 5.552 deg * EPS SEP 77.577 deg ORS b/s angle 117.9 deg 😋 = 🛛 Up Point POS_X ᅌ at 🛛 SATURN and align POS_X ᅌ with 🛛 NSP ORS rad angle 55.8 deg +62.168 Tilt L Tilt R 🔽 🗌 Labels 🔽 Axes User vector - RA: Up Zoom Out Year - **-**Hour - - **b** DEC +11.204 Left Reset Right Fill Screen 🗌 🗌 Orbits 🔽 Vectors Month - - b-- - b Minute Paste Current RA/DEC Image Down 🗹 Hi Res Zoom In FOVs Lat/lons Day Secon - - F Turn analyzer: SATURN 😂 to 🛛 EARTH 😂 about 🛛 Z ᅌ on 🛛 RWA = 12.0 min / 121.6 deg Even 🔺 🕨 S/C SAT RANGE ALTITUDE PHASE ANGLE DIAMETER SUB_S/C ALON VREL Z_HGHT ANGLE FROM BODY occ? occ? (km) (Rs) (km) (Rs) (deg) (deg mrad) LON LAT (deg) (km/s) (km) SATRN EARTH RAM _____ --------------------SATURN 415530 6.89 355722 5,90 62.1 16.68 291,10 214 -16 0 12.8 0 0.0 121.6 90.0 ---MTMAS ------331495 5.50 331298 5.50 84.8 0.07 1.25 104 -19 49 12.2 -3763 25.1 99.6 112.8 ENCELADUS ---636224 10.56 635968 10.55 65.1 0.05 0.81 19 -11 158 25.0 -33 9.8 119.3 93.1 TETHYS ------461960 7.67 461427 7.66 39.6 0.13 2.34 300 -15 -79 14.9 1382 38.8 140.1 61.2 362588 3.11 293 -19 -53 -74 57.5 132.8 56.0 DIONE 363149 6.02 44.4 0.18 10.0 ------6.03 2946 109.0 12.7 158.9 RHEA -- --216198 3.59 215434 3.57 169.5 0.41 7.10 40 -33 16 5.7 TITAN -- --1244747 20.65 1242172 20.61 44.8 0.24 4.14 341 -5 -79 12.7 2078 81.7 130.1 40.4 HYPERION 1706728 28.32 1706615 28.32 31.9 0.19 246 -65 -102 14.0 -11486 65.0 144.0 40.2 ------0.01 IAPETUS 3227365 53.55 3226618 53.54 168.5 0.03 0.46 -4 38 10.7 671715 128.4 10.8 141.5 -- --4 PHOEBE -- -- 12240833 203.11 12240723 203.10 53.2 0.00 0.02 297 15 -80 13.1 -77334 97.4 120.9 39.3 SATURN -- --415530 6.89 355722 5.90 62.1 16.68 291.10 214 -16 0 12.8 0 0.0 121.6 90.0

Periapse

Saturn 212 Legacy

No ORS Boresight Solar Constraints on Science Pointing Noted.

Feb 9 (DOY 040): VIMS performed regional mapping mosaics of Saturn's northern hemisphere. CIRS, ISS and UVIS rode along. UVIS then did a rare thermosphere scan over the sunlit hemisphere, to determine the spacecraft's tumble density altitude to aid in proximal orbit planning.

Feb 10 (DOY 041): ORS team members conducted a joint observation set of Titan as part of the ongoing Titan Monitoring Campaign. After that, a SOST PIE was performed, led by ISS observing Rhea with CIRS, UVIS and VIMS riding along, as Cassini passed through the ring plane. VIMS then acquired regional mapping mosaics of Saturn's southern hemisphere with CIRS and UVIS riding along. VIMS then performed a stellar (ring) occultation for a short time, with CIRS riding along before going back to a second set of mosaics as they continued mapping the southern hemisphere.

Feb 11 (DOY 042): Now on the unlit side of Saturn, CIRS performed a COMPSIT, where they would sit and stare at one location to derive composition. UVIS and VIMS rode along. ISS then conducted another PIE, this one a D-Ring Close-in observation. All the ORS instruments rode along.

Segment Integration Planning

Timeline Gaps and Suggested Observations

Saturn 212 Legacy

Obs	Start - End	End	Duration	Range (R _s)	Phase Angle	SSC latitude	Snapshot (mid-period)
1	ISS N. Hemisph 040T00:46:00	ere Obs 040T14:26:00	000T13:40:00	18.3-14.2	59.7-46.2	16N - 12N	
	UVIS Thermosp	here Scan, ISS PI	E, VIMS S. Hemis	phere map, Rin	g Occ, S. Hemi m	ap 2	were of SAUMP hom Colours
2	041T00:46:00	041T03:00:00	000T02:14:00	10.5-9.7	31.3-28.1	6N - 4N	
							satur typen transition and
	VIMS S. Hemi n	nap, Ring Occ, S. I	Hemi map #2	RPX 8.783	Rs @ 041T06	:09:53	very end in the second se
3	041T08:30:00	041T14:26:00	000T05:56:00	8.2-7	27.2-47.1	3S - 13S	
			Per	riapse 6.887 I	Rs @ 041T17:1	l 6:45	Set South Senator va 8
	CIRS Mid-IR Ma	ар					New of Author New Addless STREET Loss to UCC IN IN INFORMATION INFORMATIONI INFORMATIONI INFORMATIONI INFORMATIONI INFORMATII INF
4	042T00:46:00	042T09:30:00	000T08:44:00	7.8-10.4	100.9-129.5	19S - 13S	
							sature transfer and

DATA VOLUME SUMMARY TRANSFER FRAME OVERHEAD	INCLUDED (8	30 BITS PE	ER 8800-BIT FRAME)
---	-------------	------------	--------------------

			OBSERVATION_PERIOD								DOWNLINK_PASS											
						P4			 P5 	REC0	RDED	 !		PLAYE	АСК							
DOWNLINK PASS NAME	Start doy <u>hh</u> :mm	End doy <u>hh</u> :mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACTY (Mb)	MRGN (Mb)	 OPNAV (Mb)	SCI (Mb)	ENGR (Mb)	 TOTAL (Mb)	CPACTY (Mb)	MARGN (Mb)	NET_M (Mb)	ARGN (%)	CAROVR (Mb)					
SP_212EA_C34HEF0TP040_PRIME SP_212EA_C70MET0TB041_PRIME SP_212EA_C70METSEQ042_PRIME	040 15:06 041 15:06 042 14:51	041 00:06 042 00:06 042 23:51	0 0 0	178 1523 387	63 63 62	242 1586 449	3322 3322 3322 3322	3080 1736 2873	0 0 0	199 209 199	53 53 53	494 1848 701	603 3296 3332	109 1448 2630	1845 4078 2630	26% 62% 79%	0 0 0					

AVERAGE DATA RATE REPORT (calculated over observation periods and downlink passes)

Event	Start	End	CAPS	CDA	INMS	MAG	MIMI	RPWS	UVIS
	doy <u>hኪ</u> :mm	doy <u>hh</u> :mm	(bps)	(bps)	(bps)	(bps)	(bps)	(bps)	(bps)
SP_212NA_0BSERV040_NA SP_212EA_C34HEF0TP040_PRIME SP_212NA_0BSERV041_NA SP_212EA_C70MET0TB041_PRIME SP_212NA_0BSERV042_NA SP_212EA_C70METSEQ042_PRIME	040 00:06 040 15:06 041 00:06 041 15:06 042 00:06 042 14:51	040 15:06 041 00:06 041 15:06 042 00:06 042 14:51 042 23:51	0.0 0.0 0.0 0.0 0.0 0.0 0.0	524.0 524.0 2195.0 524.0 524.0 524.0 524.0	100.0 100.0 100.0 410.7 100.0 100.0	494.0 494.0 494.0 494.0 494.0 494.0 494.0	850.0 850.0 850.0 850.0 850.0 850.0	1307.4 1300.0 11300.0 1300.0 1300.0 1300.0	0.0 152.5 2000.7 152.5 0.0 152.5

Included in this SMT report:

•MAPS: not all at nominal during RPX

•PIEs with riders are included (UVIS RH rider artificially reduced - see team totals)

Kelleher

Initial SMT and Data Volume

Saturn 212 Legacy

Event	Start doy <u>hh</u> :mm	End doy	<u>իի</u> ։տտ	C.	APS Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR SP_212EA_C34HEFOTP040_PRIME DAILY TOTAL SCIENCE	040 00:06 040 15:06 040 00:06	040 041 041	15:06 00:06 00:06		0.0 0.0 0.0	28.3 17.0 45.3	0.0 86.4 86.4	5.4 3.2 8.6	0.0 0.0 0.0	26.7 16.0 42.7	45.9 27.5 73.4	0.0 0.0 0.0	70.6 42.1 112.7	0.0 4.9 4.9	0.0 0.0 0.0	0.0 0.0 0.0	62.7 0.0 62.7	239.6 197.2
OBSERVATION_NOR SP_212EA_C70METOTB041_PRIME DAILY TOTAL SCIENCE	041 00:06 041 15:06 041 00:06	041 042 042	15:06 00:06 00:06		0.0 0.0 0.0	118.5 17.0 135.5	79.2 86.4 165.6	5.4 13.3 18.7	400.0 0.0 400.0	26.7 16.0 42.7	45.9 27.5 73.4	0.0 0.0 0.0	610.2 42.1 652.3	108.0 4.9 113.0	115.0 0.0 115.0	0.0 0.0 0.0	62.7 0.0 62.7	1571.6 207.3
OBSERVATION_NOR SP_212EA_C70METSEQ042_PRIME DAILY TOTAL SCIENCE	042 00:06 042 14:51 042 00:06	042 042 042	14:51 23:51 23:51		0.0 0.0 0.0	27.8 17.0 44.8	0.0 86.4 86.4	5.3 3.2 8.6	180.0 0.0 180.0	26.2 16.0 42.2	45.1 27.5 72.7	0.0 0.0 0.0	69.0 42.1 111.1	0.0 4.9 4.9	30.0 0.0 30.0	0.0 0.0 0.0	61.6 0.0 61.6	445.2 197.2
				CAPS (Mb)	CI (1	DA Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIM (Mb	I RA) (DAR Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	
TOTAL RECORDED (OPNAV data no	ot included)		0.0	22	5.6	338.4	35.9	580.0	127.6	219.	60	.08	76.2	122.9	145.0	0.0	

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

- UVIS Rhea PIE rider was reduced in this mock SMT to ~20% of DV amount they requested in CIMS (typo?) to better gage the bottom line.
 - UVIS requested 508Mb for this rider. ???
- Reminder: MAPS are not required to reduce rates for periapse

RBOT – Friendly as per CTV:

OBS_NAME	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Z_2_NSP	POS_Z_2_NEP	NEG_Z_2_NSP	NEG_Z_2_NEP	NEG_X_2_SUN	NEG_Z_2_EARTH
SP_212NA_OBSERV040_NA	2015-040T00:06:00	2015-040T15:06:00	**BAD**	OK	OK	**BAD**	OK	OK	**BAD**	**BAD**	OK	OK
SP_212NA_OBSERV041_NA	2015-041T00:06:00	2015-041T15:06:00	**BAD**	**BAD**	OK	OK	**BAD**	**BAD**	**BAD**	**BAD**	OK	OK
SP_212NA_OBSERV042_NA	2015-042T00:06:00	2015-042T14:51:00	**BAD**	OK	OK	**BAD**	**BAD**	**BAD**	OK	OK	OK	OK

NEG_X to 119/70.6, NEG_X to Sun or NSP works through the entire segment.

+/- Z to NSP will required **four** 2-part turns to/from downlinks.

Obs. Period	X to NSP	Z to NSP	NEG_X to Sun	Z to Sun
1	NEG_X only	POS_Z only	Safe	Safe
2	NEG_X only	Not Safe	Safe	Safe
3	NEG_X only	NEG_Z only	Safe	Safe

Waypoints Chosen

Saturn 212 Legacy

Waypoint 1: (2015-040T00:46:00 – 2015-040T15:06:00): ISS_NAC to Saturn, POS_Z to NSP

Waypoint 2: (2015-041T00:46:00 – 2015-041T15:06:00): ISS_NAC to Saturn, NEG_X to NSP

Waypoint 3: (2015-042T00:46:00 – 2015-042T13:21:00): ISS_NAC to Saturn, NEG_Z to NSP

- Pointing:
 - Waypoints were chosen for science. "RBOT-friendly" attitudes were not compatible with the observations in the timeline.
- Data Volume:
 - No SMT warnings
- DSN:
 - No ap_downlink report check warnings (70M % and SEQ passes ignored).
 - DSN still negotiating DSS-43 downtime that may or may not affect this entire segment (initially DSN claimed DOYs 40-53 with no flexibility). A proposal is in the works to move downtime to DOYs 47-60.
 - If the downtime is moved, no impact on Saturn 212
 - If the downtime is not moved, the segment would need to be reintegrated for resulting loss of data volume. They are also an OTM and cannot be moved to another complex.
- Opmodes:
 - No RWA-slow and/or unique opmodes, No special requirements
- Hydrazine:
 - N/A
- Special Activities:
 - 2 PIEs:
 - ISS_212RH_REGMAP001_PIE with CIRS and UVIS as collaborative riders
 - ISS_212RI_DRCLOSE001_PIE with UVIS as a collaborative rider

Liens

Sequence Liens (should all be SPLAT items):

- List any Liens to be worked in SIP:
 - ISS_212RH_REGMAP001_PIE on 2015-041T03:00:00 (dur 05:30:00). This PIE targets ISS_NAC to Rhea. Target_motion shows Rhea center to move 91.5 degrees over the duration. ISS may need to put 20 minutes of quiescent time in the design.
- Resource checker:
 - The following gaps were planned:
 - 2015-040T14:16:00 T14:26:00 (dur = 00:10)
 - 2015-041T02:16:00 T03:00:00 (dur = 00:45)