

Juno JIRAM

JIRAM Standard Product Data Record and Archive Volume Software Interface Specification

JIR-IFSI-SY-001-2010 Version 7.0

November 24, 2015

Prepared by

R. Noschese

Co-I, Responsible Operations

13/12/2013

17/12/2013

Date

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26/11/15		

Issue	7.0	26	/11/15
Page	2	of	103

Jederico Josi F. Tosi Co-1, Geometrical Referentiation

12/17/13

Approved:

A. Adriani

Principal Investigator

A. Mura Deputy Principal Investigator

M. Teresa Capria Data Archive Scientist

Reta F. Beebe PDS Atmospheres Node Manager

William Kurth Juno Archivist 7/23/13

7/23/13

23/07/2013

Date

7/1/2 Date

Ma Donales 2013

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	3	of	103

9 January 2014

Date

David A. Gell JSOC Manager

Insa. Sul

Issue 7.0 26/11/15

JUNO/JIRAM

Page	4	of	103

Table of Contents

1 IN	NTRODUCTION	8
1.1	DISTRIBUTION LIST	8
1.2	DOCUMENT CHANGE LOG	8
С	Coordinate Systems	8
Α	Appendix A.1, A.2, A.8	8
D	Data Flow	8
С	Cover	8
Ir	nserted Appendix A.10	8
L	abel Science and HK Data	8
n	naming convention (Auxiliary Files)	8
D	Data Set Name for Luna Observation	8
С	CALIB Directory	8
Α	A.1 EDR Label data IMAGE	8
Α	A.2 EDR Label data SPECTRUM	8
\$	37.3PDS Label	9
Α	A.3 EDR-RDR PDS Label Keywords	9
\$	S7.4Local Keywords - Image (L Band & M band)	9
A.3	BEDR-RDR PDS LABEL KEYWORDS	9
1.3	TBD ITEMS	9
1.4	ABBREVIATIONS	9
1.5	GLOSSARY	11
1.6	JUNO MISSION OVERVIEW	11
1.7	RELATIONSHIPS TO OTHER INTERFACES	12
1.8	SIS CONTENT OVERVIEW	12
1.9	SCOPE OF THIS DOCUMENT	12
1.10	0 APPLICABLE DOCUMENTS	13
1.11	1 AUDIENCE	13
2 JI	IRAM IINSTRUMENT DESCRIPTION	14
2.1	DETECTORS	
2.2	SCIENCE OBJECTIVES	17
2.3	ELECTRONICS	17
2.4	Measured Parameters	17
2.5	OPERATIONAL MODES	18
2.	2.5.1 Initialization mode (INI)	
2.	2.5.2 SW Maintenance mode (SWM)	19
2.	2.5.3 Safe mode (SAF)	19
2.	2.5.4 Stand-by mode (STB)	20
2.	2.5.5 Science mode (SCI)	20

JUNO/JIRAM

Issue	7.0	26.	/11/15
Page	5	of	103

2	2.5.6 Calibration mode (CAL)	21
3 D	ATA SET OVERVIEW	22
3.1	Data Sets	22
3.2	Data Flow	23
3.3	DOWNLINK DATA AND PROCESSING DATA	24
3	3.3.1 EDR Data Production	
3	3.3.2 File Data Structure	26
4 C	ALIBRATION PIPELINE	30
4.1	RDR-SPE DATA PRODUCTION PIPELINE	30
4.2	RDR DATA PRODUCTION PIPELINE IMG	32
4.3	DATA VALIDATION	33
4.4	Archive Schedule	33
5 A	RCHIVE VOLUME GENERATION	34
5.1		
5.2	VOLUME CREATION	34
5.3	VOLUME VALIDATION METHODS	34
6 A	RCHIVE VOLUME CONTENTS	36
6.1	ROOT DIRECTORY CONTENTS	38
6.2	INDEX DIRECTORY CONTENTS	38
6.3	DOCUMENT DIRECTORY	39
6.4	CALIB DIRECTORY	39
6.5	LABEL DIRECTORY	40
6.6	CATALOG DIRECTORY	41
6.7	DATA DIRECTORY CONTENTS AND NAMING CONVENTIONS	41
	5.7.1 File Naming Conventions	
6.8		
	SOFTWARE DIRECTORY	
7 E	DR DATA PRODUCT FORMAT DESCRIPTION	43
7.1		
7	7.1.1 START_TIME AND STOP_TIME FORMATION	
7	7.1.2 SC_CLOCK_START_COUNT AND SC_CLOCK_STOP_COUNT	
7	7.1.3 COORDINATE SYSTEMS	
7.2		
7.3		
8 R	DR DATA PRODUCT DESIGN	47
SUPP	PORT STAFF AND COGNIZANT PERSONS	48
A.1	EDR Label data IMAGE	49
A 2	2 EDR LABEL DATA SPECTRUM	52

103

26/11/15 7.0 Issue of 6

Page

JUNO/JIRAM

A.3 EDR-RDR PDS LABEL KEYWORDS	. 55
SEE A.9 MISSION PHASE NAMES	. 59
A.4 LEVEL 0 DATA RECORD FORMATS (LSSL)	. 62
A.5 LEVEL 0 DATA RECORD FORMATS (HSSL)	. 66
A.6 JIRAM MODE-SUBMODE AND DATA VOLUME	. 70
A.7 JIRAM AUXILIARY DATA FILE	. 71
A.8 RDR Label data IMG	. 73
A.9 RDR LABEL DATA SPE	. 76
A.10 MISSION PHASE NAMES	. 79
A.11 LABEL AUXILIARY DATA (EDR AND RDR)	. 80

List of Figures

Figure 1: JIRAM keywords sections	9
Figure 2: The two focal planes	
Figure 3: The Image focal planes	
Figure 4: The Spectrometer focal plane	
Figure 5:General block diagram of JIRAM. The electronic box contain electronics.	s the proximity and main
Figure 6: JIRAM FSW modes	19
Figure 7: Juno Downlink Processes Context Diagram.	24
Figure 8: Jiram downlink	24
Figure 9: Jiram processing data.	25
Figure 10: Structure of a JIRAM EDR data product	26
Figure 11: Structure of a JIRAM RDR data product	30
Figure 12: Archive volume directory structure EDR	36
Figure 13: Archive volume directory structure RDR	37
Figure 14: JIRAM Raw Science Data Product Pack	44
Figure 15: JIRAM keywords sections	46
Figure 16: Structure of a JIRAM RDR data product	

Issue 7.0 26/11/15

JUNO/JIRAM

Page	7	of	103
------	---	----	-----

List of Tables

Table 1: Distribution list	8
Table 2: Document change log	9
Table 3: List of TBD items	9
Table 4: Abbreviations and their meaning	10
Table 5: Jiram parameters	
Table 6: JIRAM Science Operative Mode – submode	20
Table 7: JIRAM Calibration Operative Mode - submode	21
Table 8: JIRAM Products	22
Table 9: JIRAM DATA SETs and Data Set ID's	22
Table 10: JIRAM SCI Products	27
Table 11: JIRAM Calibration cycle	28
Table 12: JIRAM CAL Products	29
Table 13: JIRAM Archive Schedule	
Table 14: Root directory contents	38
Table 15: INDEX directory contents	38
Table 16: DOCUMENT directory contents	39
Table 17: Calibration directory contents	40
Table 18: Label directory contents	40
Table 19: CATALOG directory contents	41
Table 20: CATALOG data directory	41
Table 21: DATA directory contents	
Table 22: Naming Conventions	42
Table 23: Archive collection support staff	48
Table 24: alphabetical list of keywords appearing in an EDR data p	
Table 25: HK LSSL	
Table 26: HK HSSL	
Table 27: JIRAM Mode Submode and Data Volume	
Table 28: JIRAM Auxiliary fields	72

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26.	/11/15
Page	8	of	103

1 Introduction

This software interface specification (SIS) describes the format and content of the JIRAM Planetary Data System (PDS) data archive. It includes descriptions of the Standard Data Products and associated metadata, and the volume archive format, content, and generation pipeline.

1.1 **DISTRIBUTION LIST**

Name	Organization	e-mail
David Gell		David.Gell@swri.edu
Reta Beebe		rbeebe@nmsu.edu
A. Adriani		alberto.adriani@iaps.inaf.it
M. Capria		mariateresa.capria@iaps.inaf.it
A. Cicchetti		andrea.cicchetti@iaps.inaf.it
A. Mura		alessandro.mura@iaps.inaf.it
William Kurth		william-kurth@uiowa.edu
Lyle Huber		lhuber@nmsu.edu
F. Tosi		federico.tosi@iaps.inaf.it
J. Redfern		jredfern@swri.edu

Table 1: Distribution list

1.2 **DOCUMENT CHANGE LOG**

Change	Date	Affected portion
Initial template	01/15/2010	All
JIRAM EDR data File Structure	09/22/2011	\$ 6.1 pag. 39
Relationships to Other Interfaces	09/22/2011	\$ 1.7 pag. 12
SIS Content Overview	09/22/2011	\$ 1.8 pag 12
All sections	03/13/2012	
All sections	06/25/2013	
COORDINATE SYSTEMS	07/08/2013	\$6.1.3 pag 41
APPENDIX A.1, A.2, A.8	07/08/2013	
DATA FLOW	07/08/2013	\$ 3.2 pag 23
COVER	07/08/2013	
INSERTED APPENDIX A.10	08/19/2013	
LABEL SCIENCE AND HK DATA	08/19/2013	\$ 3.3.1; Figure 10
NAMING CONVENTION (AUXILIARY FILES)	08/19/2013	\$ 5.7.1
DATA SET NAME FOR LUNA OBSERVATION	08/19/2013	Table 9
CALIB DIRECTORY	08/27/2014	Table 17
A.1 EDR LABEL DATA IMAGE	08/27/2014	
A.2 EDR LABEL DATA SPECTRUM	09/09/2014	

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
II\A.	r/IAI	3 -2	2013-12
Issue	7.0	26	/11/15
Page	9	of	103

\$7.3PDS LABEL	09/09/2014	Figure 1: JIRAM keywords sections
A.3 EDR-RDR PDS LABEL KEYWORDS	09/09/2014	Inserted Keyword : TARGET_PIXELS
\$7.4LOCAL KEYWORDS - IMAGE (L BAND & M BAND)	09/09/2014	Inserted new paragraph
A.3 EDR-RDR PDS Label Keywords	09/09/2014	

Table 2: Document change log

1.3 **TBD ITEMS**

Table 3 lists items that are not yet finalized.

Item	Section(s)	Page(s)

Table 3: List of TBD items

1.4 ABBREVIATIONS

Abbreviation	Meaning	
ASCII	American Standard Code for Information Interchange	
CCSDS	Consultative Committee for Space Data Systems	
CD-ROM	Compact Disc – Read-Only Memory	
CDR	Calibrated Data Record	
CFDP	CCSDS File Delivery Protocol	
CK	C-matrix Kernel (NAIF orientation data)	
CODMAC	Committee on Data Management and Computation	
CRC	Cyclic Redundancy Check	
DAP	Data Analysis Product	
DDR	Derived Data Record	
DMAS	Data Management and Storage	
DVD	Digital Versatile Disc	
DVD-R	DVD - Recordable media	
E&PO	Educational and Public Outreach	
EDR	Experiment Data Record	
EGSE	Electrical Ground Support Equipment	
SPDR	Standard Product (Experiment and Pipeline) Data Record	
FEI	File Exchange Interface	
FOV	Field of View	
FTP	File Transfer Protocol	
GB	Gigabyte(s)	
GCR	Galactic Cosmic Ray	
GSFC	Goddard Space Flight Center	
HK	Housekeeping	

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26/11/15		

Page 10 of 103

HSSL	High Speed Serial Link
HTML	Hypertext Markup Language
ICD	Interface Control Document
IMG	Image
IOT	Instrument Operations Team
ISO	International Standards Organization
JADE	Jovian Auroral Plasma Distributions Experiment
JEDI	Jupiter Energetic Particle Detector Instrument
JIRAM	Jupiter InfraRed Auroral Mapper
JPL	Jet Propulsion Laboratory
JSC	Johnson Spaceflight Center
JSOC	Juno Science Operations Center
LET	Lineal Energy Transport
LSSL	Low Speed Serial Link
MAG	Magnetometer Instrument
MB	Megabyte(s)
MOS	Mission Operations System
MWR	Microwave Radiometer Instrument
NAIF	Navigation and Ancillary Information Facility (JPL)
NASA	National Aeronautics and Space Administration
NSSDC	National Space Science Data Center
ODL	Object Description Language
PCK	Planetary Cartographic and Physical Constants Kernel (NAIF)
PDS	Planetary Data System
PPI	Planetary Plasma Interactions Node (PDS)
RDR	Reduced Data Records
RSSG	Radio Science System Group
SCET	Spacecraft Event Time
SCLK	Spacecraft Clock
SIS	Software Interface Specification
SPE	Spectrometer
SPICE	Spacecraft, Planet, Instrument, C-matrix, and Events (NAIF data format)
SPWG	Science Planning Working Group
SPK	SPICE (ephemeris) Kernel (NAIF)
SwRI	Southwest Research Institute
TBC	To Be Confirmed
TBD	To Be Determined
TEP	Tissue Equivalent Plastic
UVS	Ultraviolet Spectrometer Instrument
V-EGA	Venus-Earth Gravity Assist

JIR-IFSI-SY-001-2010			
INAF/IAPS-2013-12			2013-12
Issue	7.0	26	/11/15
Page	11	of	103

1.5 **GLOSSARY**

- **Archive** An archive consists of one or more data sets along with all the documentation and ancillary information needed to understand and use the data. An archive is a logical construct independent of the medium on which it is stored.
- **Archive Volume** A volume is a unit of media on which data products are stored; e.g. one DVD-R. An *archive volume* is a volume containing all or part of an archive; i.e. data products plus documentation and ancillary files.
- **Archive Volume Set** When an archive spans multiple volumes, they are called an *archive volume set*. Usually the documentation and some ancillary files are repeated on each volume of the set, so that a single volume can be used alone.
- Catalog Information High-level descriptive information about a data set (e.g. mission description, spacecraft description, instrument description), expressed in Object Description Language (ODL), which is suitable for loading into a PDS catalog.
- **Data Product** A labeled grouping of data resulting from a scientific observation, usually stored in one file. A product label identifies, describes, and defines the structure of the data. An example of a data product is a planetary image, a spectral table, or a time series table.
- **Data Set** A data set is an accumulation of data products together with supporting documentation and ancillary files.
- **Experiment Data Record** An accumulation of raw output data from a science instrument, in chronological order, with duplicate records removed, together with supporting documentation and ancillary files.
- **Pipeline Data Record** An accumulation of calibrated data from a science instrument, derived from experiment data records, together with supporting documentation, calibration data, and ancillary files.
- **Standard Data Product** A data product generated in a predefined way using well-understood procedures and processed in "pipeline" fashion. Data products that are generated in a non-standard way are sometimes called *special data products*.

1.6 Juno Mission Overview

The launch period for Juno opens on 5 August 2011 and extends for 21 days until 26 August. The spacecraft uses a ΔV -EGA trajectory consisting of a deep space manoeuvre on 12 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 500 km. Jupiter arrival is on 5 July 2016 using a 107-day capture orbit prior to commencing operations for a 1-(Earth) year long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar with a periapses altitude of 4500 km and a semi major axis of 19.91 RJ giving an orbital period of 10.9725 days. The primary science is acquired for approximately 6 hours centered on each periapses although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Currently, 5 of the first 7 periapses are dedicated to microwave radiometry of Jupiter's deep atmosphere with the remaining orbits dedicated to gravity measurements to determine the structure of Jupiter's interior. All orbits will include fields and particles measurements of the planet's auroral regions. Juno is spin stabilized with a rotation rate of 1-3

JIR-IFSI-SY-001-2010			
INAF/IAPS-2013-12			2013-12
Issue	7.0	26	/11/15
Page	12	of	103

revolutions per minute (RPM). For the radiometry orbits the spin axis is precisely perpendicular to the orbit plane so that the radiometer fields of view pass through the nadir. For gravity passes, the spin axis is aligned to the Earth direction, allowing for Doppler measurements through the periapsis portion of the orbit. The orbit plane is initially very close to perpendicular to the Sun-Jupiter line and evolves over the 1-year mission. Data acquired during the periapsis passes are recorded and played back over the subsequent apoapsis portion of the orbit.

Juno's instrument complement includes Gravity Science using the X and Ka bands to determine the structure of Jupiter's interior; vector fluxgate magnetometer (MAG) to study the magnetic dynamo and interior of Jupiter as well as to explore the polar magnetosphere; and a microwave radiometer (MWR) experiment covering 6 wavelengths between 1.3 and 50 cm to perform deep atmospheric sounding and composition measurements. The instrument complement also includes a suite of fields and particle instruments to study the polar magnetosphere and Jupiter's aurora. This suite includes an energetic particle detector (JEDI), a Jovian auroral (plasma) distributions experiment (JADE), a radio and plasma wave instrument (Waves), an ultraviolet spectrometer (UVS), and a Jupiter infrared auroral mapping instrument (JIRAM). The JunoCam is a camera included for education and public outreach. While this is not a science instrument, we plan to capture the data and archive them in the PDS along with the other mission data. Appendix C includes Lead Co-Is and archivists for each instrument, along with the associated PDS Discipline Node.

1.7 RELATIONSHIPS TO OTHER INTERFACES

Raw data in PDS format are generated by the EGSE and PDS Converter; any changes in these tools in the generation process would necessarily affect this document. Any future reprocessing of the data, for whatever reason, even if the labels are not affected, must be taken into account and described in this document.

1.8 SIS CONTENT OVERVIEW

- Section 2 describes the JIRAM instrument.
- Section 3 describes the data sets, data flow, and validation.
- Section 4 describes the archive volumes generation
- Section 6 describes the structure of the archive volumes and contents of each file.
- Section 6 describes the structure of the EDR products.
- Section 7 describes the structure of the RDR products.

1.9 **SCOPE OF THIS DOCUMENT**

The specifications in this SIS apply to all JIRAM Standard Data Record products submitted for archive to the Planetary Data System (PDS), for all phases of the Juno mission. Some sections of this document describe parts of the JIRAM archive and archiving process that are managed by the PDS archive team. These sections have been provided for completeness of information and are not maintained by the JIRAM team.

JIR-IFSI-SY-001-2010			
INAF/IAPS-2013-12			2013-12
Issue	7.0	26	/11/15
Page	13	of	103

1.10 APPLICABLE DOCUMENTS

[AD01] ISO 9660-1988, Information Processing—Volume and File Structure of CD-ROM for Information Exchange, 04/15/1988.

[AD02] Planetary Data System Archive Preparation Guide, Version 1.1, JPL D-31224, 08/29/2006.

[AD03] Planetary Data System Standards Reference, JPL D-7669, Part 2, Version 3.8, 02/27/2009.

[AD04] Planetary Science Data Dictionary Document, Planetary Data System, JPL D-7116, Version 1r65, 02/2007.

[AD05] Juno Mission Operations Concept Document, JPL D-35531, Version Preliminary, 04/30/2007.

[AD06] Juno Science Data Management and Archive Plan, Version Final, JPL D-34032, 08/26/2009.

[AD07] ICD - Science Operations center (SOC) and PDS Athmosheres NODE/PPI, Version 2,06/18/2013.

1.11 AUDIENCE

This document is useful to those wishing to understand the format and content of the JIRAM PDS data product archive collection. Typically, these individuals would include scientists, data analysts, or software engineers.

	Y-001-2010 PS-2013-12		
	Issue	7.0	26/11/15
	Page	14	of 103

IID IECI CV 001 2010

JUNO/JIRAM

2 JIRAM IINSTRUMENT DESCRIPTION

JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 µm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations on-board a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.

JIRAM combines two data channels in one instrument: the **imager** and the **spectrometer**, which are housed in the same optical subsystem (fig. 1). The instrument is composed of the Optical Head (OH) and the Main Electronic (ME). The ME contains the electronics to drive the Focal Plane Arrays (FPAs) and compensating mirror, and perform the acquisition and conversion of the science and housekeeping data. It also manages the operation of the two channels, gathers data and housekeeping information from them, stores the data, performs data compression, and interfaces the instrument with the spacecraft.

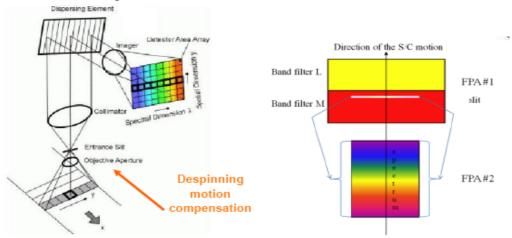
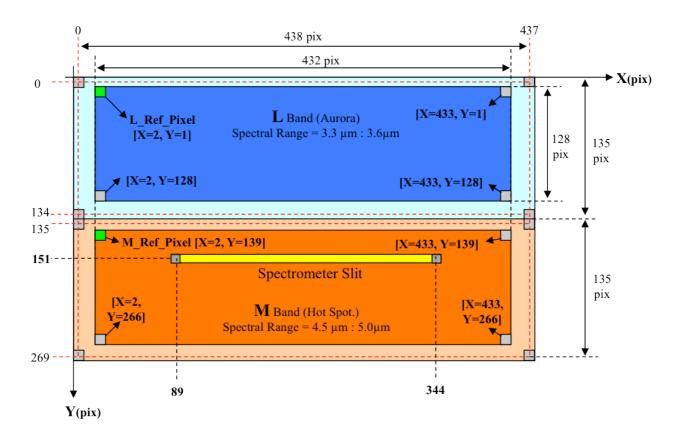


Figure 2: The two focal planes


	- 10 - 10	_	001-2010 2013-12
Issue	7.0	26/	/11/15
Page	15	of	103

2.1 **DETECTORS**

JIRAM IMG and SPE channels use two HgCdTe focal planes with a CMOS multiplexer having the same characteristics: 270×438 pixels, 38 µm pixel pitch, 2 millions e- full-well capacity. A reduced window of pixels equal to 256×336 for the SPE and 256×432 for the IMG is used.

Detectors are passively cooled down to 80-90K through a thermal harness connected to an external radiator. Focal planes are housed in two separate mechanical structures which allow to

- 1. Maintain the correct alignment w.r.t. the optical design;
- 2. Thermally isolate w.r.t the instrument housing;
- 3. Hold the order sorting filters on the SPE and the L and M filters on the IMG.

- Matrix pixels filter L
- Active Matrix pixels filter L
- Matrix pixels filter M
- Active Matrix pixels filter M

Figure 3: The Image focal planes

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
INA	r/IAP	S-2013-12		
Issue	7.0	26/11/15		
Page	16	of 103		

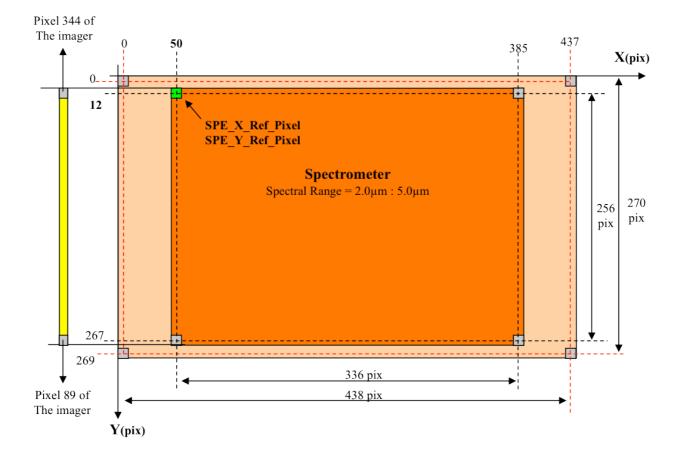


Figure 4: The Spectrometer focal plane

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0	26/11/15		
Page	17	of	103	

2.2 Science Objectives

The Jovian InfraRed Auroral Mapper (JIRAM) will explore the dynamics and the chemistry of Jovian auroral regions by high contrast imaging and spectroscopy. It will also analyze the Jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the Jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure.

2.3 **ELECTRONICS**

JIRAM combines 2 data channels in one instrument: the imager and the spectrometer, which are housed in the same optical subsystem. The instrument is composed of the Optical Head (OH) and the Main Electronic (ME). The ME contains the electronics to drive the FPAs and compensating mirror and to perform the acquisition and conversion of the science and housekeeping data. The single ME box contains the Digital Processing Unit, the proximity (detector driver and readout board), the main (CPU board) electronics, the power supply, and the limited angle de spinning mechanism driver board. A general block diagram of JIRAM is shown in Fig. 4.

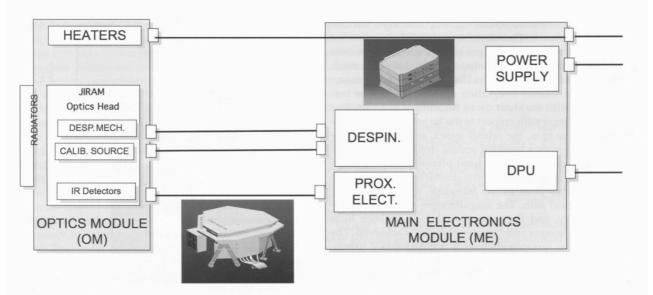


Figure 5: General block diagram of JIRAM. The electronic box contains the proximity and main electronics.

Calib. Source, calibration source; Desp. Mech, de-spinning mechanism; DPU, Digital Processing Unit; Prox. Elect, proximity electronics.

2.4 MEASURED PARAMETERS

The overall design of JIRAM has been driven by the necessity to have an instrument with the smallest possible volume and, consequently, mass, without degrading its performance. Table 5 shows the main characteristic of the instrument.

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26	/11/15	
Page	18	of	103	

.11	UN	\mathbf{O}	/.T	IR	A	М

Parameter	Unit	Value /Description
Telescope F#		3.7
Equivalent aperture diameter	mm	44
Pixel IFOV	μrad	250
Spectral range	μm	2-5
Average spectral dispersion	nm / pix	9
Detector technology	-	HgCdTe + CMOS mux
Array formats	#	Imager: 256x432;
•		Spectrometer: 256x336
Pixel size	μm	38x38
Image channel dimensions (FOV)	0	3.5x6.0
Spectroscopic channel dimensions (slit FOV)	0	0.0143x3.5
Peak quantum efficiency	%	>50
Full well capacity	e^-	2x10^6
Operating temperature	K	<100
Auroral filter wavelengths	μm	3.48 fwhm < 0.28
Hot-spot filter wavelengths	μm	4.8 fwhm < 0.5
Power consumption	W	<15
Approximate instrument mass (overall)	Kg	<13
Approximate Optical Head volume	m^3	3.8x10^-2
Approximate Electronics volume	m^3	9x10^-3

Table 5: Jiram parameters

2.5 **OPERATIONAL MODES**

JIRAM FSW manages different operations, organised for operating modes as follows: PROM SW modes

- Initialisation mode (INI)
- SW Maintenance mode (SWM)
- Safe mode (SAF)
- Stand-by mode (STB)
- Science mode (SCI)
- Calibration mode (CAL)

The operative modes and the related transitions are reported in Figure 6

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0	26/11/15		
Page	19	of	103	

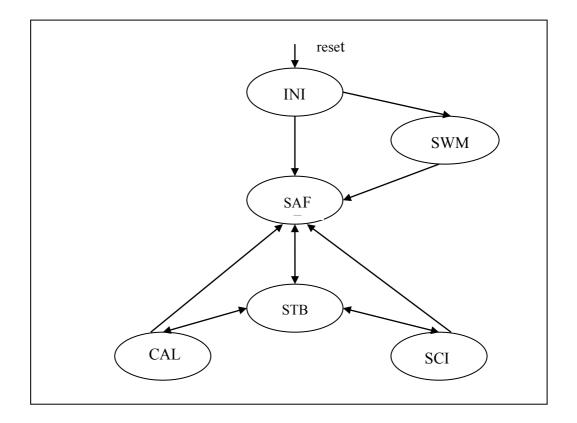


Figure 6: JIRAM FSW modes

2.5.1 Initialization mode (INI)

At the start-up (or after any reset), the instrument executes the INI mode, where all the preliminary operations necessary for the nominal working (HW and SW initialisation, memory checks, etc.) are executed (Primary Boot). At the end of the Primary Boot the instrument is able to check TC and send TM via the LSSL. The Secondary Boot is performed after the reception of the proper TC.

2.5.2 SW MAINTENANCE MODE (SWM)

The SWM mode is commanded from INI to allow the direct access to the on board RAM and EEPROM memories which can be modified and checked to allow SW patching and parameters modification.

2.5.3 SAFE MODE (SAF)

The SAF mode is commanded from SWM or INI mode after the successfully loading of

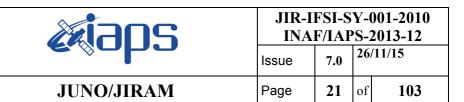
JIR-IFSI-SY-001-2010					
INAF/IAPS-2013-12					
Issue	7.0	26	/11/15		
Page	20	of	103		

the EEPROM SW (Secondary Boot). The IR detectors are Off. This mode can be entered (commanded or autonomously) by all the EEPROM. This mode can be accessed by all the modes.

2.5.4 STAND-BY MODE (STB)

The STB mode is commanded from SAF. In this mode the detectors are on to allow thermal stabilization. The instrument is ready to receive command to set and select the operative modes (SCI, CAL). The mode is autonomously entered at the end of each acquisition sequence.

2.5.5 SCIENCE MODE (SCI)


In the SCI mode the instrument performs a Science Session according to the parameters received in STB. The main tasks are: NADIR acquisition time evaluation based on SC Dynamics, IR commanding, data pre-processing, data compression, data packetization and transmission via HSSL\LSSL to SC, de-spinning mirror motor command to compensate the SC rotation. Several sub-modes are selectable to combine the capabilities of the two IR detectors (the first for images, the second for spectra).

Simulated sub-modes are implemented too (I0S0 60 00). Data from the S/C are trasmitted in sub-frames. Each detector full active areas is split into 6 sub-frames.

MODE	HEX MODE - SUBMODE	SUBMODE	Number of pixels stored for IMG	Number of pixels stored for SPE	Number of Sub- Frames
SCI	60 01	I0S1	NO IMG	256 LINES x 336 SAMPLES	IMG = 0 SPE=6
SCI	60 02	I0S2	NO IMG	64 LINES x 336 SAMPLES	IMG = 0 SPE=3
SCI	60 03	I0S3	NO IMG	16 LINES x 336 SAMPLES	IMG = 0 SPE=3
SCI	60 11	I1S1	256 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 6 SPE=6
SCI	60 12	I1S2	256 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 6 SPE=3
SCI	60 13	IIS3	256 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 6 SPE=3
SCI	60 21	I2S1	128 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 3 SPE=6
SCI	60 22	I2S2	128 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 3 SPE=3
SCI	60 23	I2S3	128 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 3 SPE=3
SCI	60 31	I3S1	128 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 3 SPE=6
SCI	60 32	I3S2	128 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 3 SPE=3
SCI	60 33	I3S3	128 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 3 SPE=3
SCI	60 10	I1S0	256 LINES x 432 SAMPLES	NO SPE	IMG = 6 SPE=0
SCI	60 20	I2S0	128 LINES x 432 SAMPLES	NO SPE	IMG = 3 SPE=0
SCI	60 30	I3S0	128 LINES x 432 SAMPLES	NO SPE	IMG = 3 SPE=0

Table 6: JIRAM Science Operative Mode – submode

2.5.6 CALIBRATION MODE (CAL)

In the CAL mode the instrument performs the Calibration Sequence. The calibration sources are on. The mirror motor is commanded to a fix position.

MODE	HEX MODE - SUBMODE	SUBMODE	Number of pixels stored for IMG	Number of pixels stored for SPE	Number of Sub-Frames
CAL	50 01	10S1	NO IMG	256 LINES x 336 SAMPLES	IMG = 0 SPE=6
CAL	50 02	10S2	NO IMG	64 LINES x 336 SAMPLES	IMG = 0 SPE=3
CAL	50 03	1083	NO IMG	16 LINES x 336 SAMPLES	IMG = 0 SPE=3
CAL	50 11	IIS1	256 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 6 SPE=6
CAL	50 12	1182	256 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 6 SPE=3
CAL	5013	1183	256 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 6 SPE=3
CAL	50 21	I2S1	128 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 3 SPE=6
CAL	50 22	1282	128 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 3 SPE=3
CAL	50 23	I2S3	128 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 3 SPE=3
CAL	50 31	1381	128 LINES x 432 SAMPLES	256 LINES x 336 SAMPLES	IMG = 3 SPE=6
CAL	50 32	I3S2	128 LINES x 432 SAMPLES	64 LINES x 336 SAMPLES	IMG = 3 SPE=3
CAL	50 33	1383	128 LINES x 432 SAMPLES	16 LINES x 336 SAMPLES	IMG = 3 SPE=3
CAL	50 10	I1S0	256 LINES x 432 SAMPLES	NO SPE	IMG = 6 SPE=0
CAL	50 20	I2S0	128 LINES x 432 SAMPLES	NO SPE	IMG = 3 SPE=0
CAL	50 30	I3S0	128 LINES x 432 SAMPLES	NO SPE	IMG = 3 SPE=0

Table 7: JIRAM Calibration Operative Mode - submode

JIR-1FSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26/11/15	
Page	22	of 103	

3 DATA SET OVERVIEW

3.1 *DATA SETS*

Currently, two levels of processing are foreseen for JIRAM data (see table 8):

- Level 1b (EDR): telemetry data that have been cleaned and merged, time ordered and instrument modes. Data are in scientifically useful form, but still uncalibrated.
- ➤ Level 2 (RDR): Level 1b with calibration and corrections applied to yield data in scientific units.

Standard Data Product ID	ID	NASA Level	COD MAC	Product Format
Raw IR images versus time	IMG_EDR		2	Binary 16 bits
Raw IR spectral image versus time	SPE_EDR		2	Binary 16 bits
IR Calibration images versus time	IMG_RDR		3	Binary 32 bits
IR Calibration spectral versus time	SPE_RDR		3	Binary 32 bits

Table 8: JIRAM Products

The Data Sets are homogeneous in terms of the processing level of the data and the resulting list of data sets is provided in the table below.

Data Set	Data Set Name	Data Set ID
2	JUNO JUPITER JIRAM EXPERIMENT DATA RECORD V1.0	JNO-J-JIRAM-2-EDR-V1.0
3	JUNO JUPITER JIRAM REDUCED DATA RECORD V1.0	JNO-J-JIRAM-3-RDR-V1.0

For Luna fly by:

Data Set	Data Set Name	Data Set ID
2	JUNO MOON JIRAM EXPERIMENT DATA RECORD V1.0	JNO-L-JIRAM-2-EDR-V1.0
3	JUNO MOON JIRAM REDUCED DATA RECORD V1.0	JNO-L-JIRAM-3-RDR-V1.0

Table 9: JIRAM DATA SETs and Data Set ID's

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue 7.0 26/11/15		/11/15		
Page	23	of	103	

3.2 *DATA FLOW*

Data organized in submodes, as described in tables 6 and 7, are not compressed. Compression on the data is possible to reduce the data volume. Lossy compression is possible on imager data; the images can be reduced to JPEG format. The lossy compression reduces the images' data volume of a factor 6. Lossless compression can be applied to spectra. The lossless compression would produce a compression of a variable factor that depends on the datum itself. The factor is about 1.5 on average. The Juno Data Management and Storage (DMAS) will receive packets and CCSDS File Delivery Protocol (CFDP) products from the Deep Space Network (DSN) and place these on the Project data repository system. The DMAS will provide the initial processing of the raw telemetry data bringing it to Committee on Data Management and Computation (CODMAC) Level 2 science data, comprising bested and de-overlapped data. At this point compressed data are not decompressed. The JIRAM Instrument Operations Team (IOT) will retrieve the CODMAC Level 2 data from the DMAS using FEI services and ancillary data from the JPL Mission Support Area (MSA) via Juno Science Operations Center (JSOC). Decompression of compressed data and any necessary restructuring of the data will be carried out by the IOT. The JIRAM Science Investigation Team will verify the content and the format will be validated. The resulting decompressed, restructured CODMAC Level 2 data will constitute the lowest level of data to be archived with the PDS. JSOC will coordinate the validation of the edited (CODMAC Level 2) data archive volumes created by the IOT. JSOC development and operations will be carried out at SwRI, in coordination with the MOS at JPL. The JSOC will also receive and organize higher-level data products that are developed by the Science Investigation Team based on the Level 2 data and ancillary data and return these to the JSOC. JSOC will support archiving the CODMAC Level 2 data by building archive volumes and verifying the format of the volumes and included data and metadata. Higher-level data set archives will be coordinated through the JSOC. The Science Investigation Team will be responsible for ensuring that the metadata and documentation included with these data sets are complete and accurate. This means that both JSOC and the Science Investigation Team will need to work closely with the PDS. This coordination will be fostered via the Data Archive Working Group.

A comprehensive description of the Juno Mission System is provided in the Juno Mission Operations Concept. A data flow diagram for the downlink process is shown in Fig. 7.

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0	26	/11/15	
Page	24	of	103	

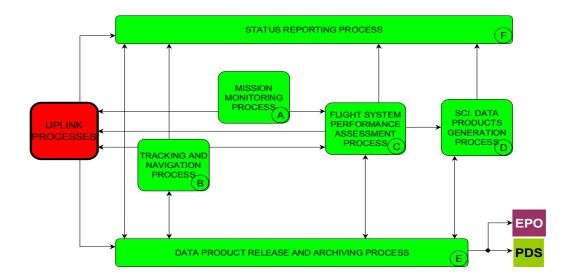


Figure 7: Juno Downlink Processes Context Diagram.

3.3 DOWNLINK DATA AND PROCESSING DATA

The downlink procedures involve JIRAM Science and Engineering Telemetries, as well as JUNO spacecraft housekeeping telemetries and SPICE kernels products. JIRAM is able to transfer the collected data to the spacecraft through two dedicated buses: HSSL and LSSL. Depending on the selected BUS, data products are respectively retrieved by the File Exchange Interface (FEI) for HSSL and RAMPAGE for LSSL.

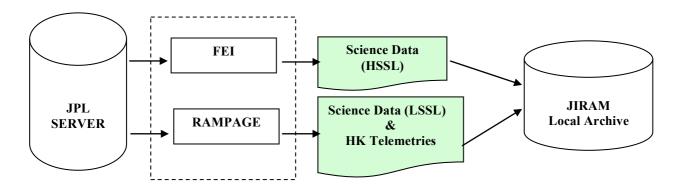


Figure 8: Jiram downlink

The data are then fed into the EGSE, located at IAPS-INAF in Rome, and transformed into CODMAC Level 2 data with a detached PDS label.

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0		/11/15	
Page	25	οf	103	

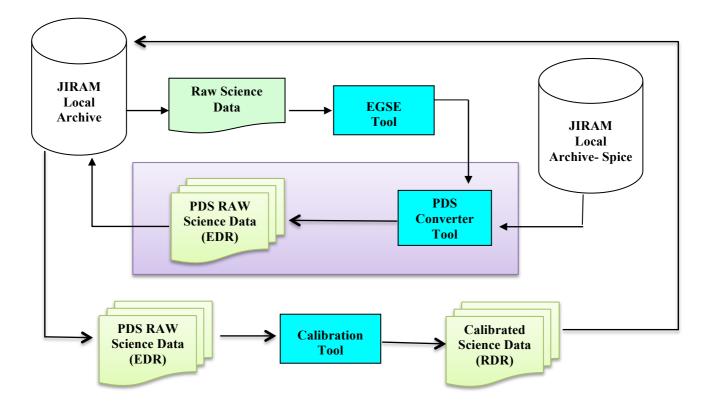
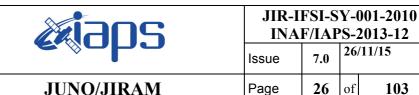


Figure 9: Jiram processing data.


3.3.1 EDR DATA PRODUCTION

Each Data Product will consist of four files (see Figure 10):

- A binary file containing the scientific telemetry of the instrument.
- A detached ASCII label file describing the content of the data product. Such label is written
 according to standards defined by the Planetary Data System (PDS), and lists parameters
 describing both the observation in which data were acquired and the structure of the files in
 which data are stored and parameters extracted from instrument and spacecraft
 housekeeping telemetry.
- A binary file containing housekeeping telemetry of the product
- A detached ASCII label file describing the content of the housekeeping telemetry.

The information reported in the HK file is listed in Appendix A.4.

103

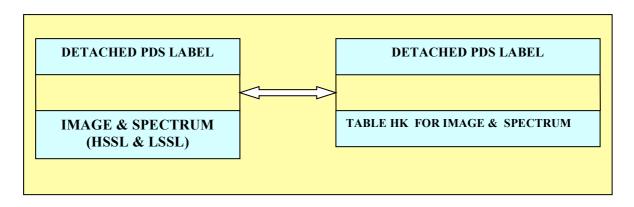


Figure 10: Structure of a JIRAM EDR data product

For each Data Set JIRAM team will deliver a spreadsheet containing auxiliary information. In each spreadsheet all products are ordered by acquisition time. This file will give an overview on the data set acquisition.

The labels permit the contents of most of the products to be browsed by PDS software, NASAView, etc.

3.3.2 FILE DATA STRUCTURE

JIRAM data consist of two parts: the first contains ancillary data produced by instrument and used to interpret scientific data, the second is science data.

The scientific products are spectra or images that are downloaded form the S/C in data packets or sub-frames. Packets are then recombined by IOT in image or a number of spectra as function of the used submode. In the Table 10 the number of scientific products (spectra or images) and number of packets, in which the active areas of the detector are split for downlink, are reported.

	ion = 1	
Spectrometer	336 sample x 256 lines	1 spectra – 6 packets
	SCI_I0_S2 (16 bits) - n_acquisit	ion = 1
Spectrometer	336 sample x 64 lines	1 spectra – 3 packets
	SCI_I0_S3 (16 bits) - n_acquisit	ion = 1
Spectrometer	336 sample x 16 lines	1 spectra – 3 packets
	SCI_I1_S1 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 256 lines	1 image – 6 packets
Spectrometer	336 sample x 256 lines	1 spectra – 6 packets
	SCI_I1_S2 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 256 lines	1 image – 6 packets
Spectrometer	336 sample x 64 lines	1 spectra – 3 packets
<u> </u>		
<u> </u>	SCI_I1_S3 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 256 lines	1 image – 6 packets

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12 Issue 7.0 26/11/15 Page 27 of 103

JUNO/JIRAM

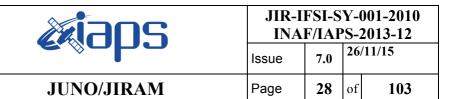

Spectrometer	336 sample x 16 lines	1 spectra – 3 packets
	•	
	SCI I2 S1 (16 bits) - n acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 256 lines	1 spectra – 6 packets
	•	
	SCI I2 S2 (16 bits) - n acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 64 lines	1 spectra – 3 packets
	-	
	SCI_I2_S3 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 16 lines	1 spectra – 3 packets
	SCI_I3_S1 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 256 lines	1 spectra – 6 packets
	SCI_I3_S2 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 64 lines	1 spectra – 3 packets
	SCI_I3_S3 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
Spectrometer	336 sample x 16 lines	1 spectra – 3 packets
	SCI_I1_S0 (16 bits) - n_acquisit	ion = 1
Imager	432 sample x 256 lines	1 image – 6 packets
	SCI I2 S0 (16 bits) - n acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
	1 *	1 2 1
	SCI I3 S0 (16 bits) - n acquisit	ion = 1
Imager	432 sample x 128 lines	1 image – 3 packets
11114501	132 bumple X 120 miles	1 mage 5 packets

Table 10: JIRAM SCI Products

The calibration procedure provides a standard sequence of 6 measurements described in Table 11. The specific the meaning of the steps is the following:

- 1 the detectors look at the internal calibration unit where the calibration sources are in the off state, the integration time is fixed;
- 2 the detector is acquired with an integration time virtually equal to 0 (actually 20 μs);
- 3 one of the calibration source is turned on and powered with a previously defined current, integration time is as in step 1;
- 4 the same calibration source is turned on and powered with a previously defined current but higher than in step 3 to produce a different level of signal, integration time is as in step 1;
- 5 same of step 1;
- 6 same of step 2.

Calibration Cycle:

Step	Phase
#1	Internal Background
#2	Readout Noise
#3a	Cal Source Stabilization
#3b	Cal Source Gain 1
#4a	Cal Source Stabilization
#4b	Cal Source Gain 2
#5	Internal background
#6	Readout noise

Table 11: JIRAM Calibration cycle

	CAL_I0_S1 (16 bits) - n_acquisi	tion = 1
Spectrometer	336 sample x 256 lines	6 spectra – 6 packets per spectrum
	CAL_I0_S2 (16 bits) - n_acquisit	tion = 1
Spectrometer	336 sample x 64 lines	6 spectra – 3 packets per spectrum
	CAL_I0_S3 (16 bits) - n_acquisit	tion = 1
Spectrometer	336 sample x 16 lines	6 spectra – 3 packets per spectrum
	CAL_I1_S1 (16 bits) - n_acquisir	tion = 1
Imager	432 sample x 256 lines	6 images – 6 packets per image
Spectrometer	336 sample x 256 lines	6 spectra – 6 packets per spectrum
	CAL_I1_S2 (16 bits) - n_acquisit	
Imager	432 sample x 256 lines	6 images – 6 packets per image
Spectrometer	336 sample x 64 lines	6 spectra – 3 packets per spectrum
	G. 7. 7. 92 (461)	
	CAL_I1_S3 (16 bits) - n_acquisi	
Imager	432 sample x 256 lines	6 images – 6 packets per image
Spectrometer	336 sample x 16 lines	6 spectra – 3 packets per spectrum
	CAL_I2_S1 (16 bits) - n_acquisi	tion - 1
Imagar	432 sample x 128 lines	6 images – 3 packets per image
Imager Spectrometer	336 sample x 256 lines	6 spectra – 6 packets per spectrum
Spectrometer	330 sample x 230 mies	o spectra – o packets per spectrum
	CAL I2 S2 (16 bits) - n acquisit	tion = 1
Imager	432 sample x 128 lines	6 images -3 packets per image
Spectrometer	336 sample x 64 lines	6 spectra- 3 packets per spectrum
•		
	CAL_I2_S3 (16 bits) - n_acquisit	tion = 1
Imager	432 sample x 128 lines	6 images – 3 packets per image
Spectrometer	336 sample x 16 lines	6 spectra – 3 packets per spectrum
	CAL_I3_S1 (16 bits) - n_acquisit	tion = 1

JIR-IFSI-SY-001-2010				
INA.	F/IAP	'S -2	2013-12	
Issue	7.0	26	/11/15	
Page	29	of	103	

- 11	IIN	$\mathbf{\Omega}^{\prime}$	ПD	A	N
				\rightarrow	

Imager	432 sample x 128 lines	432 sample x 128 lines 6 images – 3 packets per image	
Spectrometer	336 sample x 256 lines	6 spectra – 3 packets for image	
	CAL_I3_S2 (16 bits) - n_acquisit	tion = 1	
Imager	432 sample x 128 lines	6 images – 3 packets per image	
Spectrometer	336 sample x 64 lines	6 spectra – 3 packets per spectrum	
	CAL_I3_S3 (16 bits) - n_acquisit	tion = 1	
Imager	432 sample x 128 lines	6 images – 3 packets per image	
Spectrometer	336 sample x 16 lines 6 spectra – 3 packets per spectrui		
	CAL_I1_S0 (16 bits) - n_acquisit	tion = 1	
Imager	432 sample x 256 lines	6 images – 6 packets per image	
·			
	CAL_I2_S0 (16 bits) - n_acquisit	tion = 1	
Imager	432 sample x 128 lines	6 images – 3 packets per image	

CAL_I3_S0 (16 bits) - n_acquisition = 1		
Imager	432 sample x 128 lines	6 images – 3 packets per image

Table 12: JIRAM CAL Products

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	30	of	103

4 CALIBRATION PIPELINE

The RDR Data Product consist of a file that contains a PDS binary TABLE object for spectrometer and binary IMAGE object with detached label describing its structure. Data product files are named according to the convention defined in Section 5.7.1. The files contain the instrument data having a RAW identical structure (see Figure 13). The RDR is 32 bits data, the binary files are all fixed-length records, stored in most-significant-byte-first (big-endian) format.

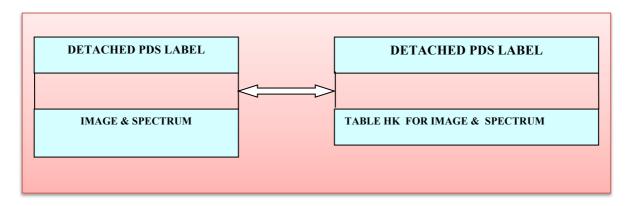


Figure 11: Structure of a JIRAM RDR data product

4.1 RDR-SPE DATA PRODUCTION PIPELINE

JIRAM-SPE flight data shall be processed using a dedicated calibration pipeline. The principal task of this pipeline is to convert raw signal data, expressed in DN/s, into physical units of spectral radiance, in $W/(m^2 \mu m \text{ sterad})$.

The instrumental signal can be expressed as:

$$DN(\lambda, t_{exp}, T, k_y) = \eta(\lambda)k_y t_{exp}\theta^2 S(\lambda, T) \frac{\lambda}{hc} \delta \lambda \frac{\pi D^2}{4}$$
 (1)

- \triangleright $\eta(\lambda)$ is the global quantum efficiency of the instrument,
- \triangleright k_v the spatial binning parameter,
- > D the telescope's pupil diameter,
- \triangleright θ the FOV,
- \triangleright $\delta\lambda$ the spectral sampling
- \triangleright t_{exp} the integration time of the observation.
- $h = 6.62618 \cdot 10 34 \text{ Js}^{-1}$ Planck constant
- $ightharpoonup c = 2.99792458 \cdot 108 \text{ ms}^{-1} \text{ speed of light in vacuum.}$
- λ = wavelength.
- \triangleright $S(\lambda, T)$ spectral radiance

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	31	of	103

The responsivity R includes all the instrument-dependent terms shown in eq. 1. The responsivity is typically measured on the center of the FOV in correspondence of the spatial pixel (sample) s*=128 for each band, b.

At this point the Instrument Transfer Function, ITF(b, s) can be determined, allowing us to retrieve the response across the whole focal plane by applying the flat-field FF

$$FF(b,s) = \frac{DN(b,s)}{DN(b,s^*)}$$
 (2)

to the responsivity R (eq.3)

$$R(b,s^*) = \frac{DN(b,s^*,T)}{BB(b,T) \cdot t_{\text{exp}}}$$
(3)

where

- ➤ DN(b, s*,T) is the signal (corrected for dark and background) measured on band b, sample s*=128 with temperature T;
- \triangleright BB(b, T) is the spectral radiance emitted by the blackbody at temperature T and t_{exp} is the instrumental integration time (in s).

$$ITF(b,s) = FF(b,s) \cdot R(b,s^*) \tag{4}$$

The target's spectral radiance, S, in W/(m² μ m sterad), measured at wavelength λ and spatial position s along the slit's direction, is equal to:

$$S(\lambda, s) = \frac{DN(b, s)}{ITF(b, s) \cdot t_{\text{exp}}}$$
(5)

The conversion from the instrumental bands, b, to wavelengths, λ , is done using the spectral calibration law

$$\lambda_c(n) = \lambda_0 + SSI \cdot n \tag{6}$$

Where:

- \triangleright λ_0 is the sample central wavelength measured on the first sensitive band on the frame
- > SSI is the average spectral sampling interval. Both these quantities are retrieved from several fine spectral scans.

with parameters λ_0 =1993.2749 nm and SSI=8.9908290 nm/band for the slit's center; the correspondence between the spatial position of samples, s, on the frame and the geometric position of the resulting target's image is possible thanks to the geometric calibration parameters.

JIR-IFSI-SY-001-201 INAF/IAPS-2013-12			
	Issue	7.0	26/11/15
	Page	32	of 103

4.2 RDR DATA PRODUCTION PIPELINE IMG

The calibration pipeline of the imager is the procedure to convert raw flight data, expressed in [DN/s], into the correspondent spectral radiance expressed in [W·m $^{-2}$ ·sr $^{-1}$ ·nm $^{-1}$]

Considering the two bands of the IMG, L and M bands, and the corresponding spectral range (λ_1, λ_2) of the pass band filters, the generic acquisition in Digital Number (DN) of the IMG can be described by the equation

$$DN(\lambda_1, \lambda_2, t_{\exp}, T_t, k_y) = \eta(\lambda_1, \lambda_2) k_y t_{\exp} \theta^2 S(\lambda_1, \lambda_2, T) \frac{\Delta \lambda}{hc} \frac{\pi D^2}{4}$$
 (7)

where

- \triangleright $\eta(\lambda_1, \lambda_2)$ is the global quantum efficiency of the instrument in the spectral range (λ_1, λ_2)
- \triangleright k_v is the spatial binning parameter
- \triangleright t_{exp} is the exposure time of the observation
- $\triangleright \theta$ is the FOV
- \triangleright S(λ_1, λ_2, T) is the target spectral radiance at a given temperature T
- \triangleright $\Delta\lambda$ is the spectral range of the considered band M or L
- > D is the telescope's pupil diameter

To retrieve the target's spectral radiance $S(\lambda_1, \lambda_2, T)$ in $[W \cdot m^{-2} \cdot sr^{-1} \cdot nm^{-1}]$ acquired during the in flight JIRAM operations is necessary to apply the following equation

$$S(\lambda_1, \lambda_2, T) = \frac{DN(\lambda_1, \lambda_2, t_{\exp}, T) - BG(\lambda_1, \lambda_2, t_{\exp})}{t_{\exp} \cdot ITF_{RAD_IMG(\lambda_1, \lambda_2)}}$$
(8)

where

- λ_1, λ_2 is the spectral range corresponding to the L band (λ_1 =3320 nm, λ_2 =3600 nm) or to the M band (λ_1 =4537,5 nm, λ_2 =5035 nm).
- \triangleright $DN(\lambda_1, \lambda_2, t_{exp}, T)$ is the signal of the target at a given temperature T acquired by the imager in the M or L band.
- \triangleright t_{exp} is the exposition time of the acquisition corrected for the "read time" of 20 nsec.
- \triangleright $BG(\lambda_1, \lambda_2, t_{exp})$ is the Back Ground Signal acquired in the M or L band at the same exposition time.
- $ightharpoonup ITF_{RAD\ IMG(\lambda 1,\lambda 2)}$ is the instrument transfer function for the radiative calibration.

JIR-IFSI-SY- INAF/IAPS-			
	Issue	7.0	26/11/15
	Page	33	of 103

4.3 **D**ATA VALIDATION

Validation of data is performed at different levels of detail and using different procedures. A dedicated tool, called EGSE, exists in the JIRAM ground segment software to verify the completeness of data received from the spacecraft. Finally, scientific validation of the data takes place during the validation period as JIRAM Co-I's perform their scientific analysis and examine in detail the content of each data product.

4.4 ARCHIVE SCHEDULE

ID	Data Set	CODMAC level	Time
J1	Raw IR Images versus time	2	4 months after acquisition
J2	Raw spectral image versus time	2	4 months after acquisition
J3	IR calibrated images versus time	3	4 months after acquisition
J4	IR calibrated spectral	3	4 months after acquisition

Table 13: JIRAM Archive Schedule

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	34	of	103

5 ARCHIVE VOLUME GENERATION

The JIRAM Standard Data Record archive collection is produced by the JIRAM IOT in cooperation with the JSOC, and with the support of the PDS Planetary Atmospheres Node at New Mexico State University (NMSU). The archive volume creation process described in this section sets out the roles and responsibilities of both these groups. The assignment of tasks has been agreed by both parties, and codified in [AD06]. Archived data received by the Atmospheres Node from the JIRAM team will be made electronically available to PDS users as soon as practicable but no later than as laid out in Table 13.

5.1 Data Production and transfer methods

The instrument operations team (IOT) produces the individual data files and the associated PDS labels for each of the standard data products defined in the data product SISs. Data files will contain all data of the appropriate type for the time interval contained in the data product. The products are formatted in image like files containing L-band and /or M.band images or a number of spectra depending on the used acquisition submode (see tables 6,7,10 and 12). Data products will be transferred via secure FTP to the JSOC. Upon receipt at the JSOC, the data files and their corresponding labels will be checked for consistency and compliance with the PDS standards. Files and labels that pass this check will be placed in directories that mirror the archive organization. The JSOC will return a positive or negative acknowledgement via email to the IOT. Upon receipt of a negative acknowledgement, the IOT will diagnose and correct the errors and resubmit the data.

The JSOC transfers data products to the PDS discipline node. Data products will be compressed and transferred via secure FTP to the PDS node. Each data transfer is logged. Upon notification of the data transfer, the PDS node decompresses the transfer and compares its contents against the transfer information. Each data file is validated against the MD5 checksum contained the corresponding detached label. The PDS node will post a positive or negative acknowledgement of the data receipt. If the acknowledgement is positive, no further action is required on the part of JSOC. If the acknowledgement is negative, the transfer is repeated after diagnosis and correction of the cause of the transfer error.

5.2 **VOLUME CREATION**

The PDS node collects the data files and labels provided by the JSOC team onto archive volumes. Each archive volume contains all instrument data available for the time interval covered by the archive volume. Once all of the data files, labels, and ancillary data files are organized onto an archive volume, the PDS node adds all of the PDS required files (AAREADME, INDEX, ERRATA, etc.) and produces the physical media.

5.3 **VOLUME VALIDATION METHODS**

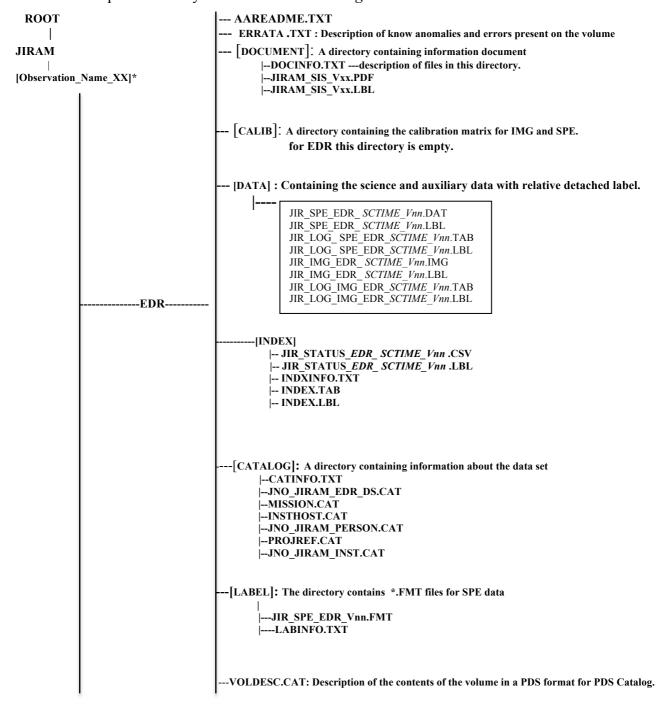
Validation of the instrument data archive is completed in two phases. The first phase is performed by the PDS node and consists of reviewing a sample, pathfinder data set for compliance with the PDS standards. The instrument team will submit a set of data files following the procedure of section 3.2. Upon receipt, the PDS node will confirm the structure of the files and labels. Once

J1R-1FS1-SY-001-2010			
INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	35	οf	103

the sample data is validated, PDS will develop software to validate subsequent data volumes in an automated fashion.

The second phase of the validation consists of a peer review to ensure usability and completeness. The peer review panel will consist of members of the instrument team, the PDS Atmospheres Bode and Engineering Node of the PDS, and at least two outside scientists actively working in the field. The PDS personnel will be responsible for validating that the archive volume(s) are fully compliant with PDS standards. The instrument team and outside science reviewers will be responsible for verifying the content of the data set, the completeness of the documentation, and the usability of the data in its archive format. Any deficiencies in the archive volume will be recorded as liens against the product by the review panel. After all liens placed against the product or the product generation software is resolved, automated production and validation can begin.

Once automated production begins, the data file content will be spot checked by members of the instrument team. The data will be used by team members to perform their analysis. Any discrepancies in the data noted during these activities will be investigated. If the discrepancy is a data error, the response will depend on the source of the error. If the error is in the software producing the data product, the error will be corrected and the data products affected will be reproduced. If there is a correctable error in a data file, the file will be replaced. If an error in a data file is uncorrectable, the error will be described in the cumulative errata file included on each volume in the volume set. The structure of data files and labels will be spot checked by the PDS discipline node for compliance with PDS standards and this SIS.



JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26/11/15	

Page 36 of 103

6 ARCHIVE VOLUME CONTENTS

This section describes the contents of the JIRAM standard product archive collection volumes, including the file names, file contents, file types, and the organizations responsible for providing the files. The complete directory structure is shown in *Figure 12 -13*.

^{*} XX indicates the version

Figure 12: Archive volume directory structure EDR

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
leeua	7.0	26/11/15		

Issue 7.0 26/11/15
Page 37 of 103

JUNO/JIRAM

- AAREADME.TXT ERRATA .TXT: Description of know anomalies and errors present on the volume [DOCUMENT]: A directory containing information document |--DOCINFO.TXT ---description of files in this directory. |--JIRAM_SIS_Vxx.PDF |--JIRAM_SIS_Vxx.LBL [CALIB]: A directory containing the calibration matrix for IMG and SPE. |--JIR_SPE_RESPONSIVITY_V1.1.DAT & JIR_SPE_RESPONSIVITY_V1.1.LBL |--JIR_IMG_M_RESPONSIVITY_V01.DAT & JIR_IMG_M_RESPONSIVITY_V01.LBL |--JIR_IMG_L_RESPONSIVITY_V01.DAT & JIR_IMG_L_RESPONSIVITY_V01.LBL |--JIR_IMG_TOT_RESPONSIVITY_V01.DAT & JIR_IMG_TOT_RESPONSIVITY_V1.1.LBL [DATA]: Containing the science and auxiliary data with relative detached labels. JIR_SPE_RDR_SCTIME_Vnn.DAT JIR_SPE_RDR_SCTIME_Vnn.LBL
JIR_LOG_SPE_RDR_SCTIME_Vnn.TAB RDR-JIR_LOG_SPE_RDR_SCTIME_Vnn.LBL JIR_IMG_RDR_SCTIME_Vnn.IMG JIR_IMG_RDR_SCTIME_Vnn.LBL JIR_LOG_IMG_RDR_SCTIME_Vnn.TAB JIR_LOG_IMG_RDR_SCTIME_Vnn.LBL -[INDEX] |-- JIR_STATUS_RDR_ SCTIME_Vnn .CSV |-- JIR_STATUS_RDR_ SCTIME_Vnn .LBL |-- INDXINFO.TXT -- INDEX.TAB -- INDEX.LBL -[CATALOG]: A directory containing information about the data set |--CATINFO.TXT --JNO JIRAM RDR DS.CAT --MISSION.CAT |--INSTHOST.CAT --JNO JIRAM PERSON.CAT --PROJREF.CĀT |--JNO_JIRAM_INST.CAT -[LABEL]: The directory contains *.FMT files for SPE data $|\text{---JIR_SPE_RDR_Vnn.FMT}|$ ---LABINFO.TXT -VOLDESC.CAT: Description of the contents of the volume in a PDS format for PDS Catalog.

Figure 13: Archive volume directory structure RDR

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
	Issue	7.0	26/11/15	
	Page	38	of 103	

6.1 ROOT DIRECTORY CONTENTS

The files listed in Table 14 are contained in the (top-level) root directory, and are produced by the JIRAM team in consultation with the Atmospheres node of the PDS. All of these files are required by the PDS volume organization standards.

File Name	File Contents	Provided By
AAREADME.TXT	This file completely describes the Volume organization and contents (PDS label attached).	PDS node
ERRATA.TXT	A cumulative listing of comments and updates concerning all Standard Data Products on all Volumes in the Volume set published to date.	PDS node and IOT
VOLDESC.CAT	A description of the contents of this Volume in a PDS format readable by both humans and computers.	PDS node

Table 14: Root directory contents

6.2 INDEX DIRECTORY CONTENTS

The following files are contained in the index directory and are produced by the PDS discipline node. The INDEX.TAB file contains a listing of all data products on the archive volume. In addition, there is a cumulative index file (CUMINDEX.TAB) that lists all data products in the archive volume set to date. The index and index information (INDXINFO.TXT) files are required by the PDS volume standards. The index tables include both required and optional columns. The cumulative index file is also a PDS requirement; however, this file is not reproduced on each data volume. An online and web accessible cumulative index file is maintained at the PDS discipline node while archive volumes are being produced. Only the last archive volume in the volume series will contain a cumulative index file.

File Name	File Contents	Provided By
INDXINFO.TXT	A description of the contents of this directory	PDS node
INDEX.TAB	A table listing all Data Products on this Volume	PDS node
INDEX.LBL	A PDS detached label that describes INDEX.TAB	PDS node
JIR_STATUS_ <i>LLL_SCTIME_Vnn</i> .CSV JIR_STATUS_ <i>LLL_SCTIME_Vnn</i> .LBL	Auxiliary Data	ЮТ

Table 15: INDEX directory contents

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26/1	1/15
Page	39	of	103

6.3 **DOCUMENT DIRECTORY**

The document directory contains documentation that is considered to be either necessary or simply useful for users to understand the archive data set. These documents are not necessarily appropriate for inclusion in the PDS catalog. The following files are contained in the DOCUMENT directory:

File Name	File Contents	Provided By
DOCINFO.TXT	A description of the contents of this directory	PDS node
JIRAM_SIS_7.0.PDF	The Archive Volume SIS (this document) in ASCII format	IOT, PDS node
JIRAM_SIS_7.0.LBL	A PDS detached label that describes JIRAM_SIS_7.0.PDF	PDS node

Table 16: DOCUMENT directory contents

6.4 CALIB DIRECTORY

The calibration directory contains the available versions of calibration files for SPE and for IMG; each file has an associated detached label. The calibration directory contains a file named CALINFO.TXT that is an ASCII text description of the CALIB directory contents. The contents of this directory are described in Table 17.

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12 Issue 7.0 26/11/15

JUNO/JIRAM

File Name (nn = version).	File Contents	Provided By
CALINFO.TXT	Brief description of directory contents and naming conventions.	PDS node
JIR_SPE_RESPONSIVITY_Vnn.DAT	Responsivity matrix, in (DN*m^2*micron*sterad)/(W*s) units, for Spectrum calibration. samples = 336 lines = 256	ЮТ
JIR_SPE_RESPONSIVITY_Vnn.LBL		ЮТ
JIR_IMG_L_RESPONSIVITY_Vnn.DAT	Responsivity matrix for Image band L, in (DN*m^2*micron*sterad)/(W*s) units. samples = 432 lines = 128	ЮТ
JIR_IMG_L_RESPONSIVITY_Vnn.LBL		ЮТ
JIR_IMG_M_RESPONSIVITY_Vnn.DAT	Responsivity matrix for Image band M, in (DN*m^2*micron*sterad)/(W*s) units. samples = 432 lines = 128	ЮТ
JIR_IMG_M_RESPONSIVITY_Vnn.LBL		ЮТ
JIR_IMG_TOT_RESPONSIVITY_Vnn.DAT	Responsivity matrix for Image band M, in (DN*m^2*micron*sterad)/(W*s) units. samples = 432 lines = 256	ЮТ
JIR_IMG_TOT_RESPONSIVITY_Vnn.LBL		ЮТ

Table 17: Calibration directory contents

6.5 LABEL DIRECTORY

This directory contains files referred to by ^STRUCTURE pointers included in labels of files in the DATA subdirectory. The content of these files is the description in ODL language of PDS Data Objects contained in Data Product files themselves. These files have a ".FMT" extension, and are named "JIR SPE *III* Vnn.FMT" where

- *Ill* indicates the processing level, either EDR or RDR.
- *nn* version

File Name	File Contents	Provided By
JIR_SPE_ <i>III</i> _Vnn.FMT	Brief description of directory contents and naming conventions.	ЮТ
LABINFO.TXT	Brief description of directory contents	

Table 18: Label directory contents

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
	Issue	7.0	26	/11/15
	Page	41	of	103

6.6 CATALOG DIRECTORY

The completed PDS catalog files in the catalog directory provide a top-level understanding of the Juno mission and its data products.

JUNO/JIRAM

Each file in the catalog directory contains an individual PDS catalog object. These objects provide a top-level understanding of the Juno mission, the instrument and its data products. The instrument team, and the CATINFO.TXT will provide the data set catalog files by the PDS discipline node.

File Name	File Contents	Provided By
CATINFO.TXT	A description of the contents of this directory	PDS node
JNO_JIRAM_xDR_DS.CAT	PDS Data Set catalog description of appropriate to the data set .	ТОІ
INSTHOST.CAT	PDS instrument host (spacecraft) catalog description of the Juno spacecraft	Juno Project
JNO_JIRAM_INST.CAT	PDS instrument catalog description of the instrument	IOT
MISSION.CAT	PDS mission catalog description of the Juno mission	Juno Project
JNO_JIRAM_PERSON.CAT	PDS personnel catalog description of instrument Team members and other persons involved with generation of Data Products	ЮТ
PROJREF.CAT	Juno related references mentioned in other *.CAT files.	Juno Project

Table 19: CATALOG directory contents

6.7 DATA DIRECTORY CONTENTS AND NAMING CONVENTIONS

The data directory contains the data products generated by the JIRAM team. The data directory will be divided into subdirectories <observation>, each containing data collected over one orbit. The data directory will also have a subdirectory for cruise data.

The naming convention for subdirectory is:

Target	Orbit number	<observation></observation>
JUPITER	1, 2, 3, 4, 5, 6, 7, 8	ORBIT_ <xx></xx>
MOON	N/A	Where XX indicates the orbit number MOON

Table 20: CATALOG data directory

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	42	of	103

Every subdirectory beneath the data directory contains a file named INFO.TXT that is an ASCII text description of the directory contents. Every file in the data path of an Archive Volume must be described by a PDS label. All labels will be detached, having the same root name as the file they describe with the suffix ".LBL". The format description is included in a file (.FMT) that is referenced by a pointer within each PDS label file.

The data directory contains the science data with label and HK data with label.

File Name	File Contents	Provided By
JIR_SSS_LLL_SCTIME_Vnn.EXT JIR_SSS_LLL_SCTIME_Vnn.LBL	Science Data	ЮТ
JIR_LOG_SSS_LLL_SCTIME_Vnn.TAB JIR_LOG_SSS_LLL_SCTIME_Vnn.LBL	HK Data	ЮТ

Table 21: DATA directory contents

6.7.1 FILE NAMING CONVENTIONS

JIRAM combines 2 data channels in one instrument: the IMAGER and SPECTROMETER. The data are named according to the suffix indicating the channel and the acquisition time. The naming convention is the following:

Product	File Name	Description
SCIENCE DATA & HOUSE JIR_SSS_LLL_SCTIME_ JIR_LOG_SSS_LLL_SCTIME_ JIR_LOG_SSS_LLL_SCTIME_	_Vnn.EXT _Vnn.LBL TIME_Vnn.TAB	SSS: indicates the sensor, IMG or SPE for imager and spectrometer respectively. LLL: indicates the processing level, either EDR or RDR. SCTIME: is yyyydddThhmmss yyyy = year ddd = doy
AUXILIARY DATA	JIR_STATUS_ <i>LLL_ SCTIME_Vnn</i> .CSV JIR_STATUS_ <i>LLL_ SCTIME_Vnn</i> .LBL	 hh = hours mm = minutes ss = seconds nn : version EXT: The file extension IMG for image DAT for spectrum

Table 22: Naming Conventions

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26	/11/15
Page	43	of	103

6.8 EXTRAS DIRECTORY

The EXTRAS directory contains files that are helpful, but are not required to interpret the INSTRUMENT data. Files in the EXTRAS directory are exempt from labeling requirements. Subdirectories are used to organize the items into groups of related files. The EXTRAS directory, if present must contain the EXTRAINFO.TXT file that identifies the function or purpose of each file in the directory.

6.9 **SOFTWARE DIRECTORY**

The optional SOFTWARE directory contains software libraries, utilities or applications required for accessing the data.

7 EDR DATA PRODUCT FORMAT DESCRIPTION

This section describes the format of the Level 1 data files.

7.1 TIME STANDARDS

7.1.1 START TIME AND STOP TIME FORMATION

The PDS formation rule for dates and time in UTC is: YYYY-MM-DDThh:mm:ss.fff with

- > YYYY year (0000-9999)
- ➤ MM month (01-12)
- \triangleright DD day of month (01-31)
- > T date/time separator
- \triangleright hh hour (00-23)
- > mm minute (00-59)
- \triangleright ss second (00-59)
- > fff fractions of second (000-999) (restricted to 3 digits)

7.1.2 SC CLOCK START COUNTAND SC CLOCK STOP COUNT

The SC_CLOCK*COUNTS represents the on-board time counters (OBT) of the spacecraft and instrument computers. This OBT counter is given in the headers of the experiment telemetry source packets. It contains the data acquisition start time as 32 bit of unit seconds followed by 16 bit of fractional seconds. Thus the OBT is represented as a two integer numbers separated by a colon, the first of which represents the integer part of the clock count, and the second of which represents the fractional second part of the clock count. A reset of the spacecraft clock is represented by an integer number followed by a slash, e.g. "1/" or "2/".

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26	/11/15	
Pane	11	of	103	

7.1.3 COORDINATE SYSTEMS

All computations are performed in the planetographic system and using positive westward longitudes in the range 0° - 360° (longitude increasing with increasing local solar time as the planet rotates). The geographic frame is the one used in the SPICE kernels, and defined in the IAU 2000 system.

7.2 JIRAM EDR DATA FILE STRUCTURE

The JIRAM Image focal plane is 438x270 pixels and we consider only 432x256 pixels. The JIRAM Spectrometer focal plane is 256x336 pixels.

Scientific telemetries arrive with a header containing information necessary for the further processing and analysis of the data. The precise content of the header depends on the detector and link (LSSL or HSSL). Tables detailing this information are shown in Appendix A.4 and A.5. This information is transferred in the log files, with corresponding detached labels.

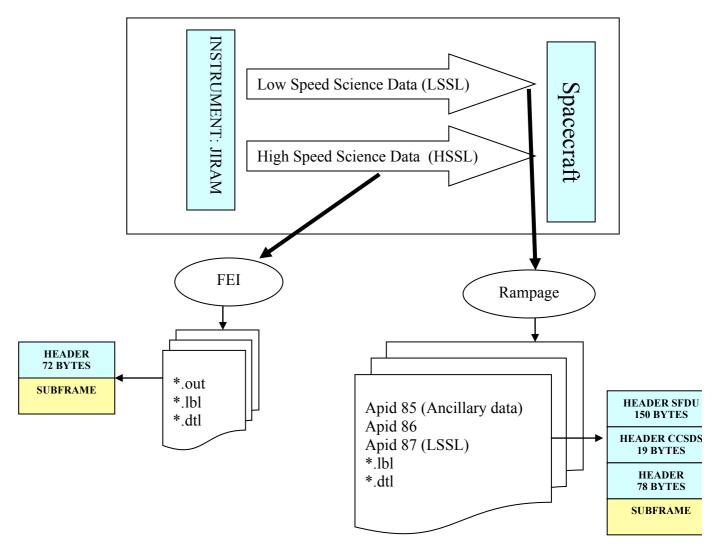


Figure 14: JIRAM Raw Science Data Product Pack

J1R-1FS1-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0	26	/11/15	
Page	45	of	103	

HSSL

The subframe must be a multiple of 32 bits long, if the compression creates a subframe not a multiple of 32 bits, the FSW (flight software) shall append a padding (from 0 to 3 bytes) at the end of the message. If the subframe is uncompressed, it has a maximum size of 18432 pixels. Each pixel (or compressed data block) is mapped on 16 bits (standard signed integer). This is the superior limit for a subframe size. In this case, since each subframe has a even number of 16-bits pixels, the padding is not necessary. JIRAM produces a file *.out for each subframe.

• LSSL

The subframe is uncompressed, it has a maximum size of 18432 pixels. Each pixel (or compressed data block) is mapped on 16 bits (standard signed integer).

Binary files are all fixed-length records, stored in most-significant-byte-first (big-endian) format.

7.3 PDS LABELS

All data files in the JIRAM Standard Product Archive Collection have associated detached PDS labels. These label files are named using the same prefix as the data file together with an LBL extension. All spaces and tabulations in the labels are encoded with ASCII character 32 (space). All labels lines are 80 long, including the EOL marker encoded as ASCII 13-10 (CR-LF).

The keywords are grouped in functional sections.

- Identification Data elements.
- Mission description parameters.
- Instrument description parameters.
- Geometry Information
 - Celestial Geometry
 - ➤ Solar Geometry
 - ➤ Coordinate System
 - ➤ Geometry in "JUPITER FIXED" coordinates from SPICE.
 - > Illumination.
 - > Channel parameters
 - ✓ Image filter M parameters
 - ✓ Image filter L parameters
 - ✓ Spectrum parameters
- Instrument status
- Pointers and Description of the PDS object

Following the label details for different operative mode:

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26.	/11/15
Page	46	of	103

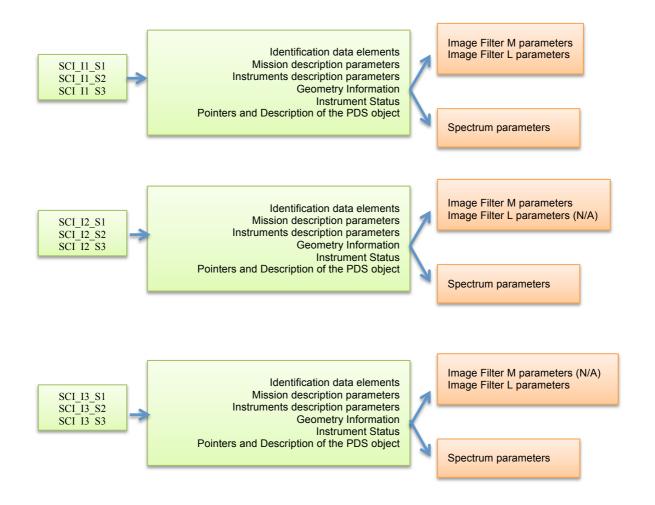


Figure 15: JIRAM keywords sections

Examples of actual labels are provided in Appendix A1, A2 and A8. More details about keywords in the labels can be found in Appendix A.3.

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12				
Issue	7.0	26	/11/15	
Page	47	of	103	

8 RDR DATA PRODUCT DESIGN

The RDR Data Product consist of a file that contains a PDS binary TABLE object for spectrometer and binary IMAGE object with detached label describing its structure. Data product files are named according to the convention defined in Section 5.7.1. The files contain the instrument data having a RAW identical structure (see Figure 13). The RDR is 32 bits data

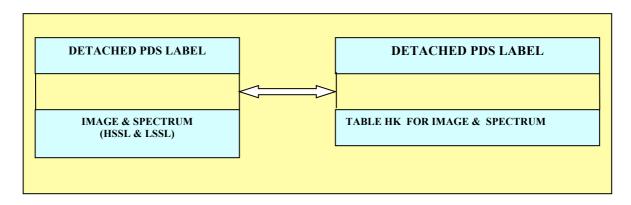


Figure 16: Structure of a JIRAM RDR data product

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26/11/15		
Page	48	of 103		

Support staff and cognizant persons

JIRAM team					
Name	Name Address Phone Email				
A. Adriani	Via del fosso del Cavaliere n°100 00133 Roma		alberto.adriani@iaps.inaf.it		
M. Teresa Capria	Via del fosso del Cavaliere n°100 00133 Roma		mariateresa.capria@iaps.inaf.it		
A. Cicchetti	Via del fosso del Cavaliere n°100 00133 Roma		andrea.cicchetti@iaps.inaf.it		
A. Mura	Via del fosso del Cavaliere n°100 00133 Roma		alessandro.mura@iaps.inaf.it		
R. Noschese	Via del fosso del Cavaliere n°100 00133 Roma		raffaella.noschese@iaps.inaf.it		

New Mexico State University					
Name	Name Address Phone Email				
Mr. Lyle Huber Atmospheres Node Archive Manager	Department of Astronomy New Mexico State University PO Box 30001, MSC 4500 1320 Frenger St. Las Cruces, NM 88003-8001 USA	+001 575 646 1862	lhuber@nmsu.edu		

Table 23: Archive collection support staff

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12			
Issue	7.0	26/11/15	

Page 49 of 103

A.1 EDR Label data IMAGE

This label is an example of the what will be done to Jupiter.

```
PDS_VERSION_ID
                               = PDS3
/* Identification data elements */
                  = "JUNO MOON JIRAM EXPERIMENT DATA RECORD V3.0"
DATA_SET_NAME
                              = "JNO-L-JIRAM-2-EDR-V3.0"
DATA SET ID
PRODUCT ID
                              = JIR IMG EDR 2013282T133713 V03
PRODUCT TYPE
                              = EDR
PROCESSING_LEVEL_ID
                              = "2"
                              = 2013-10-09T13:37:11.428
START TIME
STOP TIME
                              = 2013-10-09T13:37:11.432
SPACECRAFT_CLOCK_START_COUNT = "1/434597898.6108"
SPACECRAFT_CLOCK_STOP_COUNT = "1/434597898.6148"
STANDARD_DATA_PRODUCT_ID = "IMAGE"
PRODUCER FULL NAME
                              = "A.ADRIANI - R.NOSCHESE"
                              = "ISTITUTO NAZIONALE DI ASTROFISICA"
INSTITUTION_NAME
PRODUCT_CREATION_TIME
                              = 2015-11-09T14:21:21.000
PRODUCT_VERSION_ID
                              = "03"
                              = "jc029_JRMc.sasf"
COMMAND_FILE_NAME
                               = 48
SEQUENCE_NUMBER
SEQUENCE SAMPLES
MD5 CHECKSUM
                               = "9b7accd616eeef2b9fe21258f37db8f2"
/* Mission description parameters */
INSTRUMENT_HOST_NAME = "JUNO"
INSTRUMENT_HOST_ID = "JNO"
INSTRUMENT_HOST_ID
MISSION_PHASE_NAME
                              = "INNER CRUISE 3"
/* Instrument description parameters */
INSTRUMENT NAME
                      = "JOVIAN INFRARED AURORAL MAPPER"
                              = "JIR"
INSTRUMENT ID
INSTRUMENT TYPE
                              = "INFRARED IMAGING SPECTROMETER"
SOFTWARE VERSION ID
                              = ("EGSE 208", "PDS EDR 2.1")
/* Celestial Geometry */
RIGHT ASCENSION
                               = 351.537 <degree>
DECLINATION
                              = -15.2445 < degree>
                              = 158.865 <degree>
TWIST ANGLE
CELESTIAL NORTH CLOCK ANGLE = 200.9833 <degree>
QUATERNION
                               = (0.30538,
                                   0.62048,
                                   -0.49646,
                                   0.52467)
QUATERNION DESC
"Above parameters are calculated at the center time of the observation
which is 2013-10-09T13:37:11.430. The quaternion has the form:
w, x, y, z (i.e. SPICE format)."
/* Solar Geometry */
SPACECRAFT SOLAR DISTANCE
                              = 149210044.4552 <km>
SC SUN POSITION VECTOR
                               = (187713.4393 < km > ,
                                   121868.0462 <km>,
                                   -30678.1331 < km > )
SC SUN_VELOCITY_VECTOR
                              = (8.6078 < km/s)
                                   -6.0106 < km/s > 
                                   -0.080848 < km/s > )
                               = "N/A"
ORBIT NUMBER
```


of

103

26/11/15 Issue

50

Page

JUNO/JIRAM

-0.080848 < km/s >)

TARGET NAME = "MOON" TARGET_TYPE
TARGET_PIXELS = "SATELLITE" = 2858

/* COORDINATE SYSTEM */

COORDINATE SYSTEM NAME = "PLANETOGRAPHIC"

COORDINATE SYSTEM CENTER NAME = "MOON"

/* Geometry in "IAU_MOON" */

SUB_SPACECRAFT_LATITUDE = -7.8053 <degree>
SUB_SPACECRAFT_LONGITUDE = 32.9945 <degree>
SUB_SPACECRAFT_AZIMUTH = 90 <degree>
SPACECRAFT_ALTITUDE = -204404

TARGET_CENTER_DISTANCE = 225896.6663 < km > SC_TARGET_POSITION_VECTOR = (187713.4393 < km > , 121868.0462 <km>,

-30678.1331 < km >)SC TARGET VELOCITY VECTOR = (8.6078 < km/s)-6.0106 < km/s >

= -0.59894 < degree>SUB SOLAR LATITUDE SUB_SOLAR_LONGITUDE = 119.8456 <degree> = 272.5165 <degree> SUB_SOLAR_AZIMUTH

GROUP = L BAND PARAMETERS

/* Illumination Filter L */ INCIDENCE_ANGLE = "N/A" EMISSION_ANGLE = "N/A" = "N/A" PHASE ANGLE

/* Image filter L parameters*/

SLANT_DISTANCE = "N/A"

MINIMUM_LATITUDE = -76.4767 <degree>
CENTER_LATITUDE = "N/A"

MAXIMUM_LATITUDE = -52.0114 <degree> WESTERNMOST_LONGITUDE = 359.7611 <degree>

CENTER_LONGITUDE = "N/A"

EASTERNMOST_LONGITUDE = 2.9465 <degree> HORIZONTAL_PIXEL_SCALE = 53803.4733 <m/pixel> VERTICAL_PIXEL_SCALE = 53803.4733 <m/pre>

NORTH_AZIMUTH = 2.6827 <degree>
LINE_FIRST_PIXEL = 2
SAMPLE_FIRST_PIXEL = 1 END GROUP = L BAND PARAMETERS

GROUP = M BAND PARAMETERS

/* Illumination Filter M */ INCIDENCE_ANGLE = "N/A" EMISSION_ANGLE = "N/A" = "N/A" PHASE_ANGLE

/* Image filter M parameters*/

SLANT_DISTANCE = "N/A" MINIMUM_LATITUDE = -32.3993 <degree>

CENTER_LATITUDE = "N/A"
MAXIMUM_LATITUDE = 85.4559 <degree> WESTERNMOST_LONGITUDE = 359.8248 <degree>

CENTER_LONGITUDE = "N/A"
EASTERNMOST_LONGITUDE = 0.059523 <degree> HORIZONTAL_PIXEL_SCALE = 53803.4733 <m/pixel>

VERTICAL PIXEL SCALE

JIR-IFSI-SY-001-2010 **INAF/IAPS-2013-12**

26/11/15 Issue

= 53803.4733 < m/pixel>

```
JUNO/JIRAM
                        Page
                                51
                                   of
                                        103
```

```
= 2.6827 <degree>
   NORTH AZIMUTH
  LINE FIRST PIXEL
   SAMPLE_FIRST PIXEL
                        = 139
END GROUP = M BAND PARAMETERS
/* Instrument status */
                               = "1"
CHANNEL ID
                                               /* 0:SPECTRUM IR; 1:IMAGE */
FRAME PARAMETER
                               = (1, 0)
FRAME_PARAMETER_DESC
       ("FRAME ACQUISITION RATE", "EXTERNAL REPETITION TIME")
EXPOSURE DURATION
                               = 0.004 < second>
INSTRUMENT MODE ID
                               = SCI_I1_S1
INSTRUMENT MODE DESC
"SCI I1 S1: Science, IMAGE(256x432) full acquisition, SPECTRUM (256x336) High
Spatial and High spectral"
OBJECT
                               = FILE
RECORD TYPE
                               = FIXED LENGTH
FILE RECORDS
                               = 256
RECORD BYTES
                               = 864
FRAME TYPE
                               = "SCIENCE"
                               = " HSSL : High Speed Serial Link "
NOTE
                               = "1"
DATA_QUALITY_ID
DATA_QUALITY_DESC
                               = "0:INCOMPLETE; 1:COMPLETE"
^IMAGE
                               = "JIR IMG EDR 2013282T133713 V03.IMG"
/* Data Object pointers */
                              = IMAGE
   LINES
                              = 256
   LINE SAMPLES
                              = 432
   SAMPLE TYPE
                              = LSB INTEGER
   SAMPLE BITS
                              = 16
   DESCRIPTION
                               = "Binary Table listing containing raw science
                       telemetry frame.
                       Each line containing information about bands
                       (Bandpass L = 3320-3600 nm and M = 4537 - 5035 nm)."
END_OBJECT
                                = IMAGE
SPICE FILE NAME
{"juno_sc_rec_131006_131012_v01.bc",
"juno_v07.tf",
"juno_jiram_v01.ti",
"naif0010.tls",
"pck00010.tpc",
"JNO SCLKSCET.00018.tsc",
"de421.bsp",
"juno_struct_v01.bsp",
"jup230.bsp",
"spk_rec_131005_131014_131101.bsp"
END_OBJECT
                               = FILE
END
```


JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
20110	7.0	26/11/15		

of

103

Issue 7.0 Page 52

JUNO/JIRAM

A.2 EDR Label data SPECTRUM

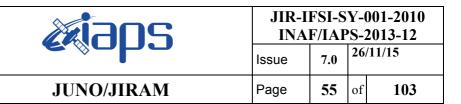
This label is an example of the what will be done to Jupiter.

```
PDS VERSION ID
                               = PDS3
/* Identification data elements */
DATA SET NAME
                               = "JUNO MOON JIRAM EXPERIMENT DATA RECORD V3.0"
DATA SET ID
                               = "JNO-L-JIRAM-2-EDR-V3.0"
PRODUCT_ID
                               = JIR_SPE_EDR_2013282T131705_V03
PRODUCT_TYPE
PROCESSING LEVEL ID
                               = "2"
START TIME
                               = 2013-10-09T13:17:01.771
STOP TIME
                               = 2013-10-09T13:17:01.971
SPACECRAFT CLOCK START COUNT = "1/434596688.9538"
SPACECRAFT_CLOCK_STOP_COUNT = "1/434596689.1538"
STANDARD DATA PRODUCT ID = "SPECTRAL"
PRODUCER_FULL_NAME
                               = "A.ADRIANI - R.NOSCHESE"
INSTITUTION NAME
                               = "ISTITUTO NAZIONALE DI ASTROFISICA"
PRODUCT CREATION TIME
                              = 2015-11-05T13:53:53.000
PRODUCT VERSION ID
                               = "03"
COMMAND_FILE_NAME
                               = "jc029_JRMc.sasf"
SEQUENCE NUMBER
                               = 8
SEQUENCE SAMPLES
MD5 CHECKSUM
                               = "e4fce83a56f36f35cb155f95832e9fbe"
/* Mission description parameters */
INSTRUMENT_HOST_NAME = "JUNO"
INSTRUMENT_HOST_ID
                              = "JNO"
                              = "INNER CRUISE 3"
MISSION PHASE NAME
/* Instrument description parameters */
INSTRUMENT NAME
                              = "JOVIAN INFRARED AURORAL MAPPER"
INSTRUMENT_ID
                               = "JIR"
INSTRUMENT_TYPE
                               = "INFRARED IMAGING SPECTROMETER"
SOFTWARE_VERSION_ID
                               = ("EGSE_208", "PDS_EDR_2.1")
/* Celestial Geometry */
RIGHT ASCENSION
                               = 351.5319 <degree>
DECLINATION
                               = -15.3716 < degree>
TWIST ANGLE
                               = 158.8458 <degree>
CELESTIAL_NORTH_CLOCK_ANGLE
                               = 201.0055 <degree>
QUATERNION
                               = (0.30482,
                                    0.62107,
                                    -0.4968,
                                    0.52397)
QUATERNION_DESC
"Above parameters are calculated at the center time of the observation
which is 2013-10-09T13:17:01.871. The quaternion has the form:
w, x, y, z (i.e. SPICE format)."
/* Solar Geometry */
SPACECRAFT SOLAR DISTANCE
                               = 149198811.52 < km >
SC_SUN_POSITION_VECTOR
                               = (-129409978.5226 < km > ,
                                    -72455433.9697 <km>,
                                   16234262.585 <km>)
SC SUN VELOCITY VECTOR
                               = (-199.4278 < km/s >,
                                    336.8252 < km/s >,
                                    -1.1346 < km/s > 
ORBIT NUMBER
                               = "N/A"
```


26/11/15

Issue JUNO/JIRAM Page 53 of 103

```
TARGET NAME
                                   = "MOON"
TARGET_TYPE
TARGET_PIXELS
                                   = "SATELLITE"
                                   = 38
/* COORDINATE SYSTEM */
COORDINATE SYSTEM NAME
                                   = "PLANETOGRAPHIC"
COORDINATE SYSTEM CENTER NAME = "MOON"
/* Geometry in "IAU_MOON" */
SUB_SPACECRAFT LATITUDE
SUB_SPACECRAFT_LATITUDE = -7.9382 <degree>
SUB_SPACECRAFT_LONGITUDE = 36.0654 <degree>
SUB_SPACECRAFT_AZIMUTH = 100.3048 <degree>
CDACECRAFT_AZIMUTH = 2107.13.7306 clm>
                                 = -7.9382 < degree>
SPACECRAFT ALTITUDE
                                 = 219713.7396 <km>
TARGET_CENTER_DISTANCE = 221429.8075 <km>
SC_TARGET_POSITION_VECTOR = (177280.89 <km>,
                                       129102.6876 <km>,
                                       -30580.0874 < km > )
SC TARGET VELOCITY VECTOR
                                  = (8.6411 < km/s),
                                       -5.9509 < km/s > 
                                       -0.081253 < km/s > )
                                 = -0.59935 < degree>
SUB SOLAR LATITUDE
                                  = 120.0165 <degree>
SUB SOLAR LONGITUDE
                                  = 272.5579 <degree>
SUB_SOLAR_AZIMUTH
/* Illumination Filter */
INCIDENCE ANGLE
                                  = "N/A"
                                  = "N/A"
EMISSION_ANGLE
PHASE_ANGLE
                                   = "N/A"
/* SPECTRUM parameters*/
SLANT DISTANCE
                                  = "N/A"
                                  = 3.5766 <degree>
MINIMUM LATITUDE
                                  = "N/A"
CENTER LATITUDE
                                  = 9.171 <degree>
MAXIMUM_LATITUDE
                                 = 29.7185 <degree>
WESTERNMOST LONGITUDE
                              = "N/A"
= 110.6194 <degree>
= 52731.2975 <m/pixel>
= 52731.2975 <m/pixel>
                                 = "N/A"
CENTER LONGITUDE
EASTERNMOST LONGITUDE
HORIZONTAL_PIXEL_SCALE
VERTICAL_PIXEL_SCALE
                                 = 2.3163 <degree>
NORTH AZIMUTH
                                  = 50
LINE FIRST PIXEL
SAMPLE_FIRST_PIXEL
                                  = 12
/* Instrument status */
CHANNEL ID
                                   = "0"
                                              /* 0:SPECTRUM IR; 1:IMAGE */
FRAME PARAMETER
                                   = (1,0)
FRAME_PARAMETER_DESC
        ("FRAME_ACQUISITION_RATE", "EXTERNAL_REPETITION_TIME")
                     = 0.2 <second>
EXPOSURE DURATION
INSTRUMENT MODE ID
                                  = SCI_I1_S1
INSTRUMENT_MODE_DESC
" SCI_I1_S1: Science, IMAGE(256x432) full acquisition, SPECTRUM (256x336) High
Spatial and High spectral"
OBJECT
                                   = FILE
                                   = FIXED_LENGTH
RECORD_TYPE
FILE RECORDS
                                   = 256
RECORD BYTES
                                   = 672
FRAME_TYPE
                                   = "SCIENCE"
```



26/11/15 Issue

JUNO/JIRAM

Page 54 of 103

```
= " HSSL : High Speed Serial Link "
NOTE
                                = "1"
DATA_QUALITY_ID
DATA QUALITY DESC
                                = "0:INCOMPLETE; 1:COMPLETE"
                                = "JIR SPE EDR 2013282T131705 V03.DAT"
^TABLE
/* Data Object pointers */
OBJECT
                                = TABLE
                                = 256
   ROWS
                                = 512
   ROW_BYTES
   DESCRIPTION
                                = "Binary Table listing containing raw science
                                   telemetry frame.
                                   Each line containing information about bands
                                   (range 2-5um)."
   INTERCHANGE FORMAT
                                = BINARY
   ^STRUCTURE
                                = "JIR SPE EDR V02.FMT"
   COLUMNS
                                = 336
END_OBJECT
                                = TABLE
SPICE FILE NAME
{"juno_sc_rec_131006_131012_v01.bc",
"juno_v07.tf",
"juno_jiram_v01.ti",
"naif0010.tls",
"pck00010.tpc"
"JNO_SCLKSCET.00018.tsc",
"de4\overline{2}1.bsp",
"juno_struct_v01.bsp",
"jup230.bsp",
"spk rec 131005 131014 131101.bsp"
END OBJECT
                                = FILE
END
```


A.3 EDR-RDR PDS Label Keywords

The following table lists in alphabetical order the keywords appearing in an EDR data product PDS label, together with an explanation of its meaning.

Keyword name	Definition	Type	Valid values
CELESTIAL_NORTH_CLOCK_ANGLE	North celestial clock angle evaluated at the center pixel of the image/spectra	DEGREES	
CENTER_LATITUDE	Center pixel planetocentric latitude for the image/spectra (TBD for calibration targets)	DEGREES	
CENTER_LONGITUDE	Center pixel planetocentric longitude for the image/spectra (TBD for calibration targets)	DEGREES	
CHANNEL_ID	Detector used for the current subframe.	CHARACTER	0 = Spectrum IR 1 = Image IR
COLUMNS	Number of columns in each row of a data object.	INTEGER	336 = Spectrometer Science Data 432 = Imager Science DATA 36 = HouseKeeping 90 = Auxiliary Data
COMMAND_FILE_NAME	The command_file_name element provides the name of the file containing the commanded observation description for this product.	CHARACTER	For JIRAM this keyword gives the information about the name of the commanding file + ID of the request in the file itself.
COORDINATE_SYSTEM_CENTER_NAME	The coordinate_system_center_name element identifies a named target, such as the Sun, a planet, a satellite or a spacecraft, as being the location of the center of the reference coordinate system.	CHARACTER	
COORDINATE_SYSTEM_NAME	The coordinate_system_name element provides the full name of the coordinate system to which the state vectors are referenced.	CHARACTER	
DATA_QUALITY_DESC	Description of the data quality which is associated with a particular DATA_QUALITY_ID value.	CHARACTER	0:INCOMPLETE; 1:COMPLETE
DATA_QUALITY_ID	Numeric key which identifies the quality of data in the data product.	CHARACTER	0; 1
DATA_SET_ID	Unique alphanumeric identifier for a data set or a data product. The DATA_SET_ID value for a given data set or product is constructed according to flight project naming conventions.	CHARACTER	See Table.9
DATA_SET_NAME	provides the full name given to a data set or a data product. The data_set_name typically identifies the instrument that acquired the data, the target of that instrument, and the processing level of the data.	CHARACTER	See Table.9
DECLINATION	EME-2000 right ascension of the center pixel in the image/spectra	DEGREES	
EMISSION_ANGLE	The "emission_angle " element provides the value of the angle between the surface normal vector at the intercept point and a vector from the intercept point to the spacecraft.	DEGREES	
ESTERNMOST_LONGITUDE	For Planetocentric coordinates and for Planetographic coordinates in which longitude increases toward the east, the easternmost (rightmost) longitude of a spatial area (e.g.,a map, mosaic, bin, feature or region) is the maximum numercial value of longitude unless it crosses the Prime Meridian. Each value is expressed in degrees, F9.5		

Issue 7.0 26/11/15

JUNO/JIRAM

Page | 56 | of | 103

	format, in the [0°, 360°] range.		
EXPOSURE_DURATION	Describes the integration duration of each pixel.	FLOAT	
FILE_RECORDS	Number of physical file records.	INTEGER	
FRAME_PARAMETER	defines the individual frame parameters of an instrument.		A three-valued array describing: "ACQUISITION_RATE", "ACQUISITION_DURATION", "BKG_ACQUISITION_RATE"
FRAME_PARAMETER_DESC	The FRAME_PARAMETER_DESC element describes the individual frame parameters listed in the element FRAME_PARAMETER.	CHARACTER	
FRAME_TYPE		CHARACTER	BACKGROUND, CAL_GAIN_1,CAL_GAIN_2,DARK,RN,SC IENCE,DOUBLE SCI
HORIZONTAL_PIXEL_SCALE	Horizontal pixel size in meters	m	· <u>-</u>
^IMAGE	Pointer to the file containing the data IMAGE object.	CHARACTER	
INCIDENCE_ANGLE	The "incidence_angle" element provides a measure of the lighting condition at the intercept point.	DEGREES	
INSTITUTION_NAME	Identidies the research center	CHARACTER	I"STITUTO NAZIONALE DI ASTROFISICA"
INSTRUMENT_HOST_ID	Unique identifier for the host where an instrument is located.	CHARACTER	"JNO"
INSTRUMENT_HOST_NAME	Full name of the host on which an instrument is based.	CHARACTER	"JUNO"
INSTRUMENT_ID	Abbreviated name or acronym which identifies an instrument.	CHARACTER	"JIR"
INTRUMENT_MODE_DESC	Description of the instrument mode which is identified by the INSTRUMENT_MODE_ID element.	CHARACTER	SCI_I0_S1: Science, no IMAGE, SPECTRUM (256x336) High Spatial and High Spectral SCI_I0_S2: Science, no IMAGE, SPECTRUM (64x336) Medium Spatial and High Spectral . SCI_I0_S3: Science, no IMAGE, SPECTRUM(16x336) Low Spatial and Hight Spectral. SCI_I1_S0: Science, IMAGE(256x432) full acquisition (L and M images), no SPECTRUM. SCI_I1_S1: Science, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (256x336) High Spatial and High spectral. SCI_I1_S2: Science, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (64x336) Medium Spatial and High spectral SCI_I1_S3: Science, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (64x336) Medium Spatial and High spectral SCI_I1_S3: Science, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (16x336) Low Spatial and High spectral SCI_I2_S0: Science, IMAGE(128x432) M-Band, no SPECTRUM .

Issue 7.0 26/11/15

57

Page

JUNO/JIRAM

Band, SPECTRUM (64x336) Medium Spatial and High Spectral

SCI_I2_S3: Science, IMAGE(128x432) M-Band, SPECTRUM (16x336) Low Spatial and High Spectral

of

103

SCI_I3_S0: Science, IMAGE(128x432) L-Band, no SPECTRUM

SCI_I3_S1: Science, IMAGE(128x432) L-Band, SPECTRUM (256x336) High Spatial and High Spectral

SCI_I3_S2: Science, IMAGE(128x432) L-Band, SPECTRUM(64x336) Medium Spatial and Hogh Spectral

SCI_I3_S3: Science, IMAGE(128x432) L-Band, SPECTRUM (16x336) Low Spatial and Hogh Spectral

CAL_I0_S1: Calibration, no IMAGE, SPECTRUM (256x336) High Spatial and High Spectral

CAL_I0_S2: Calibration, no IMAGE, SPECTRUM (64x336) Medium Spatial and High Spectral

CAL_10_S3: Calibration, no IMAGE, SPECTRUM(16x336) Low Spatial and very High Spectral

CAL_I1_S0: Calibration, IMAGE(256x432) full acquisition (L and M images), no SPECTRUM

CAL_I1_S1: Calibration, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (256x336) High Spatial and High spectral

CAL_I1_S2: Calibration, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (64x336) Medium Spatial and High spectral

CAL_I1_S3: Calibration, IMAGE(256x432) full acquisition (L and M images), SPECTRUM (16x336) Low Spatial and High spectral.

CAL_I2_S0: Calibration, IMAGE(128x432) M-Band, no SPECTRUM

CAL_I2_S1: Calibration, IMAGE(128x432) M-Band, SPECTRUM (256x336) High Spatial and High Spectral

CAL_I2_S2: Calibration, IMAGE(128x432) M-Band, SPECTRUM (64x336) Medium Spatial and High Spectral

CAL_I2_S3: Calibration, IMAGE(128x432) M-Band, SPECTRUM (16x336) Low Spatial and High Spectral

CAL_I3_S0: Calibration, IMAGE(128x432) L-Band, no SPECTRUM

of

103

26/11/15 7.0 Issue

58

Page

IIIN	$\Omega/1$	IIRAM	
JUI	U/J	INAIVI	

INOTOLINENT MODE ID		CHARACTER	CAL_ I3_S1: Calibration, IMAGE(128x432) L-Band, SPECTRUM (256x336) High Spatial and High Spectral CAL_I3_S2: Calibration, IMAGE(128x432) L-Band, SPECTRUM(64x336) Medium Spatial and High Spectral CAL I3S3: Calibration, IMAGE(128x432) L-Band, SPECTRUM (16x336) Low Spatial and High Spectral
INSTRUMENT_MODE_ID	The value of this keyword identifies the instrument mode. The valid values are the following mode.	CHARACTER	SCI_I0_S1 SCI_I0_S2 SCI_I0_S3 SCI_I1_S0 SCI_I1_S1 SCI_I1_S2 SCI_I1_S3 SCI_I2_S0 SCI_I2_S1 SCI_I2_S2 SCI_I2_S3 SCI_I3_S0 SCI_I3_S3 SCI_I3_S3 SCI_I3_S3 CAL_I0_S1 CAL_I0_S2 CAL_I0_S3 CAL_I1_S0 CAL_I1_S1 CAL_I1_S2 CAL_I1_S2 CAL_I1_S3 CAL_I2_S3 CAL_I2_S1 CAL_I2_S1 CAL_I2_S3 CAL_I2_S3 CAL_I2_S3 CAL_I2_S3 CAL_I2_S3 CAL_I2_S3 CAL_I2_S3 CAL_I3_S0 CAL_I3_S1 CAL_I3_S2 CAL_I3_S3
INSTRUMENT_NAME	Full name of an instrument.	CHARACTER	"JOVIAN INFRARED AURORAL MAPPER"
INSTRUMENT_TYPE	Type of an instrument.	CHARACTER	"INFRARED IMAGING SPECTROMETER"
INTERCHANGE_FORMAT LINE_FIRST_PIXEL	Manner in which data items are stored. This keyword gives the X coordinate of the first pixel.	CHARACTER INTEGER	
LINE_SAMPLES	Indicates the total number of data instances along the horizontal axis of an image.	INTEGER	
LINES	The total number of data instances along the vertical axis of an image.	INTEGER	
MAXIMUM_LATITUDE	The MAXIMUM_LATITUDE specifies the northernmost latitude of the target, computed in the body-fixed, rotating coordinate system specified by the COORDINATE_SYSTEM_NAME keyword. For the determination of this values, the geometric values computed for the center of each element of the field of view (pixel) are considered. Each value is expressed in degrees in the [-90°, 90°] range, F9.5 format.	DEGREES	
MINIMUM_LATITUDE	The MINIMUM_LATITUDE specifies the southernmost latitude of the target, computed in the body-fixed, rotating	DEGREES	

| Issue | 7.0 | 26/11/15 | Page | 59 | of | 103

	_	_	
TT.			A 70 /
		/JIR	$\mathbf{A} \mathbf{V}$

	1 11 11 11 11	T	
	coordinate system specified by the COORDINATE_SYSTEM_NAME keyword. For the determination of this values, the geometric values computed for the center of each element of the field of view (pixel) are considered. Each value is expressed		
	in degrees in the [-90°, 90°] range, F9.5 format.		
MISSION_PHASE_NAME	SSION_PHASE_NAME Commonly-used identifier of a mission phase.		See A.9 Mission Phase Names
MD5_CHECKSUM	It is a value of 128 bits that corresponds to a calculated checksum.	CHARACTER	
NORTH_AZIMUTH	North azimuth angle evaluated at the center pixel of the image/spectra	DEGREES	
NOTE	Describe the used bus	CHARACTER	Value =
ORBIT_NUMBER	The ORBIT_NUMBER element identifies the number of the orbital revolution of the spacecraft around a target body.	INTEGER	0 99999
PDS_VERSION_ID	Version number of the PDS standards documents that is valid when a data product label is created	STRING	PDS3
PHASE_ANGLE	The phase_angle element provides a measure of the relationship between the instrument viewing position and incident illumination (such as solar light).	DEGREES	
PROCESSING_LEVEL_ID	This data elemement identifies the processing level of a set of data according to the eight-level CODMAC standard	INTEGER	2,3
PRODUCER_FULL_NAME			" A. ADRIANI – R. NOSCHESE"
PRODUCT_CREATION_TIME	Contains the date and time at which the PDS file was created in PDS time format.		
PRODUCER_INSTITUTION_NAME	Identifies the organization responsible for developing the data products.	STRING	"ISTITUTO NAZIONALE DI ASTROFISICA"
PRODUCT_ID	Permanent, unique identifier assigned to a data product by its producer.	STRING	For JIRAM , PRODUCT_ID is the file name without extension.
PRODUCT_TYPE	Type or category of a data product within a data set.	STRING	EDR RDR
PRODUCT_CREATION_TIME	This element defines the UTC system format time when a product was created.	TIME	Formation rule is : YYYY-MM-DDThh:mm:ss.fff
PRODUCT_VERSION_ID	Version of an individual product within a data set.	CHARACTER	
PRODUCT_VERSION_TYPE	Version of an individual data product that might appear in several incarnations.	CHARACTER	
QUATERNION	Four values compose the quaternion; see QUATERNION_DESC		
QUATERNION_DESC	The 4 parameters are calculated at the center time of the observation. The quaternion has the form: w, x, y, z (i.e. SPICE format)		
RECORD_BYTES	Number of bytes in a physical file record, including record terminators and separators.	INTEGER	
RECORD_TYPE	Record format of a file.	CHARACTER	FIXED_LENGTH
RIGHT_ASCENSION	EME-2000 right ascension of the center pixel in the image/spectra	DEGREES	

26/11/15 7.0 Issue

JUNO/JIRAM of Page 60 103

ROWS	Number of rowe in a data chiest	INTEGER	
	Number of rows in a data object.		
ROW_BYTES	Number of bytes in each data object row.	INTEGER	
SAMPLE_BITS	The sample_bits element indicates the stored number of bits, or units of binary information, contained in a line_sample value.	INTEGER	
SAMPLE_FIRST_PIXEL	This keyword gives the Y coordinate of the first pixel.	INTEGER	
SAMPLE_TYPE	Indicates the data storage representation of sample value	CHARACTER	LSB_INTEGER
SLANT_DISTANCE	Slant distance to the target evaluated at the center pixel of the image.	Km	
SPACECRAFT_CLOCK_START_COUNT Value of the spacecraft clock at the time of acquisition of the first Data Block in the Data Product		CHARACTER	Formation rule is: p/ccccccccc.fffff where p is increased after each resynchronization of the S/C clock, starting from 1
SPACECRAFT_CLOCK_STOP_COUNT	COUNT Value of the spacecraft clock at the time of acquisition of the last Data Block in the Data Product.		Formation rule is: p/ccccccccc.fffff where p is increased after each resynchronization of the S/C clock, starting from 1
SUB_SPACECRAFT_AZIMUTH	Geometry in JUPITER –fixed coordinates from SPICE	DEGREES	
SUB_SPACECRAFT_LATITUDE	Geometry in JUPITER-fixed coordinates from SPICE	DEGREES	
SUB_SPACECRAFT_LONGITUDE	Geometry in JUPITER –fixed coordinates from SPICE	DEGREES	
SOURCE_PRODUCT_ID	The source_product_id data element identifies a product as input to create a new product	CHARACTER	
SPACECRAFT_ALTITUDE	This keyword provides the distance from the spacecraft to the nearest point on a reference surface of the target body measured normal to that surface.	Km	
SPACECRAFT_SOLAR_DISTANCE	The spacecraft_solar_distance element provides the distance from the spacecraft to the center of the sun	km	
SC_SUN_POSITION_VECTOR	The sc_sun_position_vector element indicates the components of the position vector from observer to sun, center expressed in J2000 coordinates, and corrected for light time and stellar aberration, evaluated at epoch at which image was taken	km	
SC_SUN_VELOCITY_VECTOR	The sc_sun_velocity_vector element indicates the components of the velocity vector of sun relative to observer, expressed in J2000 coordinates, and corrected for light time, evaluated at epoch at which image was taken	Km/s	
SC_TARGET_POSITION_VECTOR	The "sc_target_position_vector" element indicates the x-, y-, z- components of the position vector from observer to target center expressed in J2000 coordinates, and corrected for light time and stellar aberration, evaluated at epoch at which image was taken.	FLOAT-Km	
SC_TARGET_VELOCITY_VECTOR	The "sc_target_velocity_vector" element indicates the x-, y-, z- components of the velocity vector of target relative to observer, expressed in J2000 coordinates, and corrected for light time, evaluated at epoch at which image was taken.	FLOAT-Km	

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

Issue 7.0 26/11/15

Page

61 of **103**

	{ "EGSE_ <n>", "PDS_EDR_", "PDS_RDR_<q>"}; <n>,,<q> are the version numbers of software.</q></n></q></n>
CHARACTER	Auxiliary, Spectral, Image
TIME	Formation rule is: YYYY-MM-DDThh:mm:ss.fff
TIME	Formation rule is: YYYY-MM-DDThh:mm:ss.fff
INTEGER	
INTEGER	
CHARACTER	The value is the name of the file located in the LABEL directory containing the definition of the data object structure, enclosed in quotes.
CHARACTER	Names of the SPICE kernels used in producing the geometry information in the data product.
DEGREES	The production of the producti
DEGREES	
DEGREES	
CHARACTER	In a detached label, the value is the name of the file containing the data product, enclosed in quotes
FLOAT- Km	
CHARACTER	MOON, JUPITER
INTEGER	
CHARACTER	Planet, Asteroid, Star, Satellite
m DEGREES	
D	

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
Issue	7.0	26/	/11/15	
Page	62	of	103	

A.4 Level 0 data record formats (LSSL)

The files comprising JIRAM standard products have record formats that are specified in the PDS label files. This section shows the format component of PDS labels for each of the two types of Level 0 data file. The following tables list the housekeeping parameters.

For each word (first column) are listed: the type of telemetry packet from which it is extracted, the field and the word ordinal number in this packet, and the data field/HK name. The word is copied from the telemetry without any change. Fields identified as "SPARE" are empty.

Function	in packet provides the SCI	vides the SCI data via LSSL (not nominal)				
DW	Field	Size	Format	Description		
(16 bits)		(bit)				
01	ID	16	Uint16	AAAA = HSSL link BBBB = LSSL link		
02	LENGTH	16	Uint16	2324 Maximum size		
03 04	SECONDS	32	Uint32	Datation of TM production time		
05	SUBSECONDS	16	Uint16	Datation of TM production time, subsecond See 8.1 for description		
06	COUNTER	16	Uint16	TM sequence counter		
07 H	MODE	8	Uint8	Current Mode See Table 6		
07 L	SUBMODE	8	Uint8	Current Submode See Table 6		
	ACQ DATA					
08	ACQ_NUMBER	16	Uint16	Total number of acquisitions in the current session/sequence step Min=1; Max=65535		
09	ACQ_COUNT	16	Uint16	Current acquisition number in the current session Min=1; Max= ACQ_NUMBER		
10 H	ACQ_REPETITION	8	Uint8	Number of SC revolutions between two acquisitio Min=1; Max=255		
10 L	ACQ_DURATION	8	Uint 8	Acquisition Cycle duration 0 = use SC Dynamics Else Min=27; Max=255;		
11	SUBFRAME_NUMBER	16	Uint16	Total number of sub-frames for current acquisition phase Min=2; Max=6		
12 bit 15-13	SUBFRAME_COUNT	3	Enum	Current sub-frame in the current acquisition Min=1; Max=6		
12 bit 12	DATATION	1	Enum	0=external (nominal) 1=internal (recovery)		
12 bit 11	WARN_DATATION_STEP	1	Enum	0= OK 1=Out of datation tolerance		
12 bit 10	FRAME_ERROR_FLAG	1	Enum	Flag used to signal there was a timeout error durin the acquistion 0=ACQ OK 1=ACQ ERROR		
12 bit 9-7	ACQ_TYPE	3	Enum	Type of acquisition 0 = Science 1 = Double Science Frame 1 2 = Double Science Frame 2 3 = Background 4= Dark 5= Readout noise		

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12 Issue 7.0 26/11/15

Page

63 of

103

JUNO/JIRAM

12	CHANNEL ID	1	Е.	Detector and for the same of 1.6
12 hit 6	CHANNEL_ID	1	Enum	Detector used for the current subframe
bit 6				0 = Spectrum IR 1 = Image IR
12	COMP STATUS	2	Enven	Compression status of the current subframe
12 bit 5-4	COMP_STATUS	2	Enum	O = Not compressed data
υπ 3-4				0 = Not compressed data 1 = Compressed data
				2 = Not compressed data due to error
12	SUBFRAME_TYPE	3	Enum	Type of subframe
bit 3-2	SUBPRAME_ITE	3	Enum	0 = ImSubFrame = 128 x 144 pixel
010 5-2				1 = SpSubFrameF = 128x112 pixel
				2 = SpSubFrameM = 64x112 pixel
				3 = SpSubFrameS = 16x112 pixel
12	ROW_BACK_SUBTRACTION	2	Enum	RICE subtraction
bit 1-0				0= Subtraction disabled
				1= Background subtraction on
				2= Reference row subtraction on
13	START_NOISY_BITS	4	Uint4	It is the echo of SP_START_NOISY_BITS
bit 15-12				Set to 0 in case of compression error or not
				compressed data or JPG compression
13	END_NOISY_BITS	4	Uint4	It is the echo of SP_END_NOISY_BITS
bit 11-8				Set to 0 in case of compression error or not
13	CP POW	4	Uint4	compressed data or JPG compression
bit 7-4	CR_ROW	4	UINI4	Compression reference rows offset It is the echo of SP_CR_ROW
UIL /-4				Range 015
				Not valid in case of not compressed data or JPG
				compression
13	NOF_NOISY_BITS	4	Uint4	Number of used noisy bits
bit 3-0				Set to 0 in case of compression error or not
				compressed data or JPG compression
14	MAX_VAL_JPEG	16	Uint16	Max value for the pixel in JPEG
				compression. Not used in RICE.
15	MIN_VAL_JPEG	16	Uint16	Min value for the pixel in JPEG
				compression. Not used in RICE
16	TEXPO	16	Uint 16	Expo time for the used detector
				Min=0; Max=65535 ;Res=0.2msec ;
17	TDELAY	16	Uint 16	Delay time for the used detector
	CCLDATA AND WZ			Min=0 ;Max=65535; Res=0.2msec ;
	SCI DATA AND HK			
18	SECONDS	32	Uint32	Datation of science and HK acquisition time (when
19				the command of start acquisition is sent to the internal IF), second
				See 8.1 for the description
20	SUBSECONDS	16	Uint16	Datation of science and HK acquisition time (when
20	BODSECONDS	10	Cilitio	the command of start acquisition is sent to the
				internal IF),, subsecond
				See 8.1 for the description
21	NADIR_OFFSET	16	Iint16	Nadir offset angle related to the current
	_			frame, calculated by the sw
				(For example NADIR_OFFSET_1 +
				NADIR_DELTA) Min=0; Max=57343; Res=0.003138951
				deg (optical)
				NB: Used with the sign bit in the word 26
				(bit 0) to generate negative angles.
22	BKG_REPETITION	8	Uint8	Period of Background acquisition
Bit 15-8				Min=0; Max=50
				Cases: 1) If it is set to 0 every JIRAM acquisition
				is a science acquisition
				2) If it is set to 1 every JIRAM acquisition
				is a background acquisition
				3) If it is set to 2 JIRAM performs the
				sequence:

Issue 7.0 26/11/15

JUNO/JIRAM

Page | 64 | of | 103

				background acquisition
				science acquisition
				background acquisition
				science acquisition
				4) If it is set to 3 JIRAM performs the sequence:
				background acquisition
				science acquisition
				science acquisition
				background acquisition
				science acquisition
				science acquisition
22	EN DIC CUD	2	Enum	Background subtraction enabled
Bit 7-6	EN_DIS_SUB	2	Enum	0=EN
Dit /-0				1=DIS
22	DVC DV	2	Г	Type of background
Bit 5-3	BKG_RN	3	Enum	0=BKG (Internal background, mirror in
Dit 3-3				BKG position)
				1=RN (readout noise, mirror in
				BOSIGHT position with Texpo=0)
				2=DARK (External background, mirror in
				DARK position)
22	EN DIS DOLL SCI	3	Enum	0=EN
Bit 2-0	EN_DIS_DOU_SCI	3	Enum	1=DIS
23H	WIN1_X	8	Uint8	X coordinates of the SPE win or IMG L band win
				Min=0 Max 255 Res:1IDN=1pixel
23L	WIN1_Y	8	Uint8	Y coordinates of the SPE win or IMG L band win
				Min=0 Max 255 Res:1IDN=1pixel
24H	WIN2_X	8	Uint8	X coordinates of the IMG M band win, 0 in the case
				of SPE
				Min=0 Max 255 Res:1IDN=1pixel
24L	WIN2_Y	8	Uint8	Y coordinates of the IMG M band win, 0 in the case
2 · L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Cinto	of SPE
				Min=0 Max 255 Res:1IDN=1pixel
25	DET_TEMP	16	Uint16	Temperature for the used detector
23	DET_TENT	10	Cintio	Min=0; Max=16383; Res: 1DN=TBD K
26	OTATUO DET	2	Г	
	STATUS_DET	3	Enum	Detector status
bit 15-13				0=OFF
				1=ON
				2=AUTO
				3=NA
26	STATUS_GAIN	1		
20		1	Enum	Gain status for the detector
bit 12		1	Enum	Gain status for the detector 0=LOW
			Enum	
bit 12	M STATUS LOOP ERROR FLAG	1		0=LOW 1=HIGH
bit 12 26	M_STATUS_LOOP_ERROR_FLAG		Enum	0=LOW 1=HIGH Motor control loop error flag
bit 12	M_STATUS_LOOP_ERROR_FLAG			0=LOW 1=HIGH Motor control loop error flag 0=OK
26 bit 11		1	Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR
26 bit 11 26	M_STATUS_LOOP_ERROR_FLAG M_STATUS_MOTOR_MODE			0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA
26 bit 11		1	Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT
26 bit 11 26 bit 10	M_STATUS_MOTOR_MODE	1	Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN
26 bit 11 26 bit 10 26		1	Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status
26 bit 11 26 bit 10	M_STATUS_MOTOR_MODE	1	Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off
bit 12 26 bit 11 26 bit 10 26 bit 9	M_STATUS_MOTOR_MODE	1	Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status
26 bit 11 26 bit 10 26	M_STATUS_MOTOR_MODE	1	Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off
bit 12 26 bit 11 26 bit 10 26 bit 9	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER	1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on
bit 12 26 bit 11 26 bit 10 26 bit 9 26	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER	1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF	1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER	1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF Spare	1 1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off 1=Motor off 1=Motor on
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8 26L Bit 7-1 26	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF	1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off 1=Motor off 1=Motor on
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF Spare	1 1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off 1=Motor off 1=Motor on
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8 26L Bit 7-1 26	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF Spare	1 1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off 1=Motor on
bit 12 26 bit 11 26 bit 10 26 bit 9 26 bit 8 26L Bit 7-1 26	M_STATUS_MOTOR_MODE M_STATUS_MOTOR_POWER M_STATUS_ON_OFF Spare	1 1 1 1	Enum Enum Enum	0=LOW 1=HIGH Motor control loop error flag 0=OK 1=ERROR Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN Motor power status 0=Motor power off 1=Motor power on Motor status 0=Motor off 1=Motor off 1=Motor on

 JIR-IFSI-SY-001-2010

 INAF/IAPS-2013-12

 Issue
 7.0

 Page
 65

 of
 103

JUNO/JIRAM

28	S_SLIT_TEMP	16	Uint16	Slit temperature Min=0; Max=16383;
29	S_SC_IF_TEMP	16	Uint16	Interface with the S/C temperature Min=0; Max=16383;
30	S_COLD_RADIATOR_TEMP	16	Uint16	Cold radiator temperature Min=0; Max=16383;
31	S_ SPECTROMETER_MIRROR_TEMP	16	Uint16	S_ SPECTROMETER_MIRROR_TEMP
32	M_MOTOR_TS	16	Uint16	Motor temperature Min=0; Max=16383;
33	M_CAL_SOURCE_TEMP	16	Uint16	Lamp 1 (main) temperature Min=0; Max=16383;
34	M_DIFFUSER_CAL_TEMP	16	Uint16	Calibration diffuser temperature Min=0; Max=16383;
35	M_MOTOR_START_POS	16	Uint16	Motor pointing or despin start position Min=0 (-12.85714286 opt.deg); Max=8190 (12.85086496 opt.deg); Res: 0.003138951 deg (optical)
	CAL DATA			
36 bit 15-14	Lamp_ID	2	Enum	Calibration Source ID
36 bit 13 -8	Lamp_gain_current_1	6	Enum	Gain current Min=0; Max=15 0=TBD mA 1=TBD mA . 15=TBDmA
36 Bit 7-2	Lamp_gain_current_2	6		Gain current for the redundant lamp Min=0; Max=15 Res: See RD3 It's a valid field only for the steps 3-4 of the CAL mode. It's a don't care field if in SCI mode and during the steps 1-2 and 5-6 of the CAL mode.
36 bit 1-0	Spare	2		
	SUBFRAME DATA			
37	SUBFRAME_TOTAL_CHUNKS	16	Uint16	Total number of chunks for this subframe
38	SUBFRAME_CURRENT_CHUNK	16	Uint16	Number of current chunk for the current subframe

Table 25: HK LSSL.

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12						
Issue	7.0	26/11/15				
Page	66	of	103			

A.5 Level 0 data record formats (HSSL)

Function	This packet provides the SCI and CAL data via HSSL (nominal)							
DW (16 bits)	Field	Size (bit)	Format	Description				
01	ID	16	Uint16	AAAA = HSSL link BBBB = LSSL link				
02	LENGTH	16	Uint16	36932 (Maximum size)				
03 04	SECONDS	32	Uint32	Datation of TM production time, second See 8.1 for description				
05	SUBSECONDS	16	Uint16	Datation of TM production time, subsecond See 8.1 for description				
06	COUNTER	16	Uint16	TM sequence counter				
07 H	MODE	8	Uint8	Current Mode See Table 6				
07 L	SUBMODE	8	Uint8	Current Submode See Table 6				
00	ACQ DATA	16	*** .1.6					
08	ACQ_NUMBER	16	Uint16	Total number of acquisitions in the current session/sequence step Min=1; Max=65535				
09	ACQ_COUNT	16	Uint16	Current acquisition number in the current session Min=1; Max= ACQ_NUMBER				
10 H	ACQ_REPETITION	8	Uint8	Number of SC revolutions between two acquisition: Min=1; Max=255				
10 L	ACQ_DURATION	8	Uint 8	Acquisition Cycle duration 0 = use SC Dynamics Else Min=27; Max=255;				
11	SUBFRAME_NUMBER	16	Uint16	Total number of sub-frames for current acquisition phase Min=2; Max=6				
12 bit 15-13	SUBFRAME_COUNT	3	Enum	Current sub-frame in the current acquisition Min=1; Max=6				
12 bit 12	DATATION	1	Enum	0=external (nominal) 1=internal (recovery)				
12 bit 11	WARN_DATATION_STEP	1	Enum	0= OK 1=Out of datation tolerance (same of ERROR #30, see table 8.3.3)				
12 bit 10	FRAME_ERROR_FLAG	1	Enum	Flag used to signal there was a timeout error during the acquisition 0=ACQ OK 1=ACQ ERROR				
12 bit 9-7	ACQ_TYPE	3	Enum	Type of acquisition 0 = Science 1 = Double Science Frame 1 2 = Double Science Frame 2 3 = Background 4= Dark 5= Readout noise 6= Calibration frame				
12 bit 6	CHANNEL_ID	1	Enum	Detector used for the current subframe 0 = Spectrum IR 1 = Image IR				
12 bit 5-4	COMP_STATUS	2	Enum	1 = Image IR Compression status of the current subframe 0 = Not compressed data 1 = Compressed data 2 = Not compressed data due to error				

Issue 7.0 26/11/15

Page **67** of **103**

JUNO/JIRAM

12 bit 3-2	SUBFRAME_TYPE	3	Enum	Type of subframe $0 = ImSubFrame = 128 \times 144 \text{ pixel}$ $1 = SpSubFrameF = 128 \times 112 \text{ pixel}$ $2 = SpSubFrameM = 64 \times 112 \text{ pixel}$ $3 = SpSubFrameS = 16 \times 112 \text{ pixel}$
12 bit 1-0	ROW_BACK_SUBTRACTION	2	Enum	RICE subtraction 0= Subtraction disabled 1= Background subtraction on 2= Reference row subtraction on
13 bit 15-12	START_NOISY_BITS	4	Uint4	It is the echo of SP_START_NOISY_BITS Set to 0 in case of compression error or not compressed data or JPG compression
13 bit 11-8	END_NOISY_BITS	4	Uint4	It is the echo of SP_END_NOISY_BITS Set to 0 in case of compression error or not compressed data or JPG compression
13 bit 7-4	CR_ROW	4	Uint4	Compression reference rows offset It is the echo of SP_CR_ROW Range 015 Not valid in case of not compressed data or JPG compression
13 bit 3-0	NOF_NOISY_BITS	4	Uint4	Number of used noisy bits Set to 0 in case of compression error or not compressed data or JPG compression
14	MIN_PIXEL_JPEG	16	Uint16	Max value for the pixel in JPEG compression. Not used in RICE
15	MAX_PIXEL_JPEG	16	Uint16	Min value for the pixel in JPEG compression. Not used in RICE
16	TEXPO	16	Uint 16	Expo time for the used detector Min=0; Max=65535 ;Res=0.2msec ;
17	TDELAY	16	Uint 16	Delay time for the used detector Min=0;Max=65535; Res=0.2msec;
	SCI DATA AND HK			
18 19	SECONDS	32	Uint32	Datation of science and HK acquisition time (when the command of start acquisition is sent to the internal IF), second See 8.1 for the description
20	SUBSECONDS	16	Uint16	Datation of science and HK acquisition time (when the command of start acquisition is sent to the internal IF), subsecond See 8.1 for the description
21	NADIR_OFFSET	16	lint16	Nadir offset angle (Deg/100) related to the current frame , calculated by the sw (For example NADIR_OFFSET_1 + NADIR_DELTA)
22 Bit 15-8	BKG_REPETITION	8	Uint8	Period of Background acquisition Min=0; Max=50
22 Bit 7-6	EN_DIS_SUB	2	Enum	Background subtraction enabled 0=EN 1=DIS
22 Bit 5-3	BKG_RN	3	Enum	Type of background 0=BKG 1=RN 2=DARK
22 Bit 2-0	EN_DIS_DOU_SCI	3	Enum	0=EN 1=DIS
23H	WIN1_X	8	Uint8	X coordinates of the SPE win or IMG L band win Min=0 Max 255 Res:11DN=1pixel
23L	WIN1_Y	8	Uint8	Y coordinates of the SPE win or IMG L band win Min=0 Max 255 Res:11DN=1pixel
24H	WIN2_X	8	Uint8	X coordinates of the IMG M band win, 0 in the case of SPE Min=0 Max 255 Res:1IDN=1pixel

of

103

Issue 7.0 26/11/15

68

Page

JUNO/JIRAM

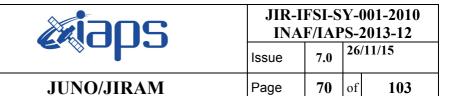
24L	WIN2_Y	8	Uint8	Y coordinates of the IMG M band win, 0 in the case of SPE Min=0 Max 255 Res:1IDN=1pixel
25	DET_TEMP	16	Uint16	Temperature for the used detector
	_			Min=0; Max=16383; Res: 1DN=TBD K
26 bit 15-13	STATUS_DET	3	Enum	Detector status 0=OFF 1=ON 2=AUTO 3=TBD
26 bit 12	STATUS_GAIN	1	Enum	Gain status for the detector 0=LOW 1=HIGH
26 bit 11	M_STATUS_LOOP_ERROR_FLAG	1	Enum	Motor control loop error flag 0=OK 1=ERROR
26 bit 10	M_STATUS_MOTOR_MODE	1	Enum	Despinning mode, acquired from FPA 0=POINT 1=DE-SPIN
26 bit 9	M_STATUS_MOTOR_POWER	1	Enum	Motor power status 0=Motor power off 1=Motor power on
26 bit 8	M_STATUS_ON_OFF	1	Enum	Motor status 0=Motor off 1=Motor on
26	Spare	7		
27	S_TELESCOPE_MIRROR_TEMP	16	Uint16	Telescope mirror temperature Min=0; Max=16383;
28	S_SLIT_TEMP	16	Uint16	Slit temperature Min=0; Max=16383;
29	S_SC_IF_TEMP	16	Uint16	Interface with the S/C temperature Min=0; Max=16383;
30	S_COLD_RADIATOR_TEMP	16	Uint16	Cold radiator temperature Min=0; Max=16383;
31	S_SPECTROMETER_MIRROR_TE MP	16	Uint16	Spectrometer mirror temperature Min=0; Max=16383;
32	M_MOTOR_TS	16	Uint16	Motor temperature Min=0; Max=16383;
33	M_CAL_SOURCE_TEMP	16	Uint16	Lamp 1 (main) temperature Min=0; Max=16383;
34	M_DIFFUSER_CAL_TEMP	16	Uint16	Calibration diffuser temperature Min=0; Max=16383;
35	M_MOTOR_START_POS	16	Uint16	Motor point/despin start position Min=0 (-12.85714286 opt. deg); Max =16380 (12.85086496 opt. deg); Res: 0.00156948 deg (optical)
	CAL DATA			
36 bit 15-14	Lamp_ID	2	Enum	Calibration Source ID 0=Main ON 1=Redundant ON 2=Both ON
36 Bit 13 -8	Lamp_gain_current_1	6	Enum	Gain current for the main lamp. Min=0; Max=15 See RD3 It's a valid field only for the steps 3-4 of the CAL mode. It's a don't care field if in SCI mode and during the steps 1-2 and 5-6 of the CAL mode.

 JIR-IFSI-SY-001-2010

 INAF/IAPS-2013-12

 Issue
 7.0

 Page
 69
 of


 103

JUNO/JIRAM

36 bit 7-2	Lamp_gain_current_2	6	Enum	Gain current for the redundant lamp. Min=0; Max=15 See RD3 It's a valid field only for the steps 3-4 of the CAL mode. It's a don't care field if in SCI mode and during the steps 1-2 and 5-6 of the CAL mode.
36 bit 1-0	Spare	2		

Table 26: HK HSSL.

A.6 JIRAM Mode-Submode and Data volume

Mode	Sub mode	MODE SUBMO DE	Frame I	Frame S	Sub Frame I	Sub Frame S	HSSL	I comp factor	S comp factor	HSSL Science	HSSL Science	LSSL HK
							Data Volume uncomp			Data Volume comp min	Data Volume comp max	Data Volume
		hex	(Pixel)	(Pixel)			(Mbits)			(Mbits)	(Mbits)	(Mbits)
INI	None	10 00	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,026
SWM	None	20 00	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,026
SAF	None	30 00	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,026
STB	None	40 00	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,026
CAL	I1-S1	50 11	110592	86016	6	6	18,91	6	1,3-1,5	8,16	7,31	0,026
CAL	I2-S2	50 22	55296	21504	3	3	7,39	6	1,3-1,5	2,49	2,28	0,026
CAL	I3-S3	50 33	55296	5376	3	3	5,84	6	1,3-1,5	1,30	1,25	0,026
SCI	I0-S1	60 01	0	86016	0	6	1,38	6	1,3-1,5	1,06	0,92	0,026
SCI	I0-S2	60 02	0	21504	0	3	0,34	6	1,3-1,5	0,27	0,23	0,026
SCI	I0-S3	60 03	0	5376	0	3	0,08	6	1,3-1,5	0,68	0,06	0,026
SCI	I1-S0	60 10	110592	0	6	0	1,77	6	1,3-1,5	0,3	0,3	0,026
SCI	I1-S1	60 11	110592	86016	6	6	3,15	6	1,3-1,5	1,36	1,22	0,026
SCI	I1-S2	60 12	110592	21504	6	3	2,12	6	1,3-1,5	0,56	0,53	0,026
SCI	I1-S3	60 13	110592	5376	6	3	1,86	6	1,3-1,5	0,37	0,36	0,026
SCI	I2-S0	60 20	55296	0	3	0	0,88	6	1,3-1,5	0,15	0,15	0,026
SCI	I2-S1	60 21	55296	86016	3	6	2,26	6	1,3-1,5	1,21	1,07	0,026
SCI	I2-S2	60 22	55296	21504	3	3	1,23	6	1,3-1,5	0,41	0,38	0,026
SCI	I2-S3	60 23	55296	5376	3	3	0,97	6	1,3-1,5	0,22	0,21	0,026
SCI	I3-S0	60 30	55296	0	3	0	0,88	6	1,3-1,5	0,15	0,15	0,026
SCI	I3-S1	60 31	55296	86016	3	6	2,27	6	1,3-1,5	1,21	1,07	0,026
SCI	I3-S2	60 32	55296	21504	3	3	1,23	6	1,3-1,5	0,42	0,38	0,026
SCI	I3-S3	60 33	55296	5376	3	3	0,97	6	1,3-1,5	0,22	0,21	0,026

Table 27: JIRAM Mode Submode and Data Volume

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12 Issue 7.0 26/11/15

JUNO/JIRAM

Page 71 of 103

A.7 JIRAM AUXILIARY DATA FILE

Field Name	Type	Description	Applicable Modes
FILE NAME	CHARACTER	Science file Name	SCI, CAL
COMMAND FILE NAME	CHARACTER	Command file name	SCI, CAL
MODE	CHARACTER	Operative Mode	SCI, CAL
SCLK	20		SCI, CAL
ET	20		SCI, CAL
GeometryEpoch	20		SCI, CAL
FRAME_TYPE	CHARACTER	Type of acquisition 0-Science 1-Double Science Frame 1 2-Double Science frame 2 3-Background 4-Dark 5-Readout noise	SCI
ACQ NUMBER	INTEGER	Total number acquisition	SCI, CAL
ACQ_COUNT	INTEGER	Current acquisition number in the current session	SCI, CAL
ACQ_REPETITION	INTEGER	Numbers of SC revolutions between two acquisitions. (Min= 1 – Max = 255);	SCI
ACQ_DURATION	INTEGER	Acquisition Cycle duration (Min= 27 – Max = 255); 0=use SC Dynamics.	SCI, CAL
ACQ_TYPE	CHARACTER	Type of acquisition: Science, Double SCience Frame 1, Double SCience Frame 2, Background (Internal background), Dark (External background), Readout noise, Calibration frame.	SCI, CAL
LAMP	CHARACTER	Lamp: > Lamp_1 > Lamp_2 > Both_lamp	CAL
BKG REPETITION	INTEGER	Period of Background acquisition	SCI
LAMP GAIN CURRENT 1	NTEGER	GAIN current for main lamp	CAL
LAMP GAIN CURRENT 2	NTEGER	GAIN current for main lamp	CAL
DETECTORS	CHARACTER	Detector: > Spectrum IR > Image IR	SCI, CAL
STATUS_GAIN	CHARACTER	Gain status for the detector 0=LOW 1=HIGH	SCI, CAL
LINK	CHARACTER	Link: > HSSL > LSSL	SCI
COMP_STATUS	CHARACTER	Compression status of the current subframe: 0-Not compressed data, 1-Compressed data, 2-Not compressed data due to error	SCI, CAL
EN_DIS_SUB	CHARACTER	Background subtraction > enabled -BC_SUBTRACTION_EN > disabled-BC_SUBTRACTION_DIS	SCI, CAL
BKG_RN	CHARACTER	Type of background: > BKG (Internal background, mirror in BKG position) > RN (readout noise, mirror in BOSIGHT position with Texpo=0)	SCI

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12						
Issue	7.0	26/11/15	5			
Page	72	of 1	103			

JUN	/	$\mathbf{R} \mathbf{\Lambda}$. M

		> DARK (External background, mirror in DARK position)	
STATUS_DET	CHARACTER	Detector status 0=OFF 1=ON 2=AUTO 3=TBD	SCI, CAL
TEXPO	INTEGER	Expo Time for the used detector.	SCI, CAL
TDELAY	INTEGER	Delay Time for the used detector.	SCI, CAL
NADIR_OFFSET	NTEGER	Nadir offset angle related to the current frame.	SCI
DET_TEMP	FLOAT	Temperature in °K for the used detector	SCI, CAL
S_TELESCOPE_MIRROR_TEMP	FLOAT	Telescope mirror temperature in °K	SCI, CAL
S_SLIT_TEMP	FLOAT	Slit temperature in °K	SCI, CAL
S_SC_IF_TEMP	FLOAT	Interface with the S/C temperature in °K	SCI, CAL
S_COLD_RADIATOR_TEMP	FLOAT	Cold radiator temperature in °K	SCI, CAL
S_SPECTROMETER_MIRROR_TEMP	FLOAT	Spectrometer mirror temperature in °K	SCI, CAL
M_MOTOR_TS	FLOAT	Motor temperature in °K	SCI, CAL
M_CAL_SOURCE_TEMP	FLOAT	Lamp_1 (main) temperature in °K	SCI, CAL
M_DIFFUSER_CAL_TEMP	FLOAT	Calibration temperature in °K	SCI, CAL

Table 28: JIRAM Auxiliary fields

JIR-IFSI-SY-001-2010				
INAF/IAPS-2013-12				
21122	7.0	26/11/15		

Issue 7.0 26/11/15

JUNO/JIRAM

Page | 73 | of | 103

A.8 RDR Label data IMG

This label is an example of the what will be done to Jupiter.

```
PDS_VERSION_ID
                              = PDS3
/* Dataset and Product Information */
                      = "JUNO MOON JIRAM REDUCED DATA RECORD V3.0"
DATA SET NAME
                             = "JNO-L-JIRAM-3-RDR-V3.0"
DATA SET ID
PRODUCT ID
                             = JIR IMG RDR 2013282T131633 V03
PRODUCT TYPE
                             = RDR
PROCESSING_LEVEL_ID
                              = "3"
START TIME
                             = 2013-10-09T13:16:31.530
STOP TIME
                             = 2013-10-09T13:16:31.534
SPACECRAFT_CLOCK_START_COUNT = "1/434596658.7119"
SPACECRAFT_CLOCK_STOP_COUNT = "1/434596658.7159"
STANDARD_DATA_PRODUCT_ID = "IMAGE"
PRODUCER FULL NAME
                             = "A. ADRIANI - R.NOSCHESE"
                              = "ISTITUTO NAZIONALE DI ASTROFISICA"
INSTITUTION NAME
                             = 2015-11-23T17:41:41.000
PRODUCT_CREATION_TIME
PRODUCT_VERSION_ID
                              = "03"
SEQUENCE_NUMBER
                              = 7
SEQUENCE_SAMPLES
                              = 65
MD5 CHECKSUM
                              = "fbe63d681f4f5c698593f4dd79caabef"
/* Mission description parameters */
INSTRUMENT_HOST_NAME = "JUNO"
INSTRUMENT_HOST_ID
                              = "JNO"
                              = "INNER CRUISE 3"
MISSION PHASE NAME
/* Instrument description parameters */
INSTRUMENT_NAME = "JOVIAN INFRARED AURORAL MAPPER"
                             = "JIR"
INSTRUMENT_ID
INSTRUMENT TYPE
                             = "INFRARED IMAGING SPECTROMETER"
SOFTWARE VERSION ID
                              = ("EGSE 208", "PDS RDR 01")
/* Celestial Geometry */
RIGHT ASCENSION
                              = 351.5411 <degree>
DECLINATION
                             = -15.1394 < degree>
                             = 158.8815 <degree>
TWIST ANGLE
CELESTIAL NORTH CLOCK ANGLE
                            = 200.9691 <degree>
QUATERNION
                              = (0.30584,
                                   0.61999,
                                  -0.49618,
                                   0.52524)
QUATERNION DESC
"Above parameters are calculated at the center time of the observation
which is 2013-10-09T13:16:31.532. The quaternion has the form:
w, x, y, z (i.e. SPICE format)."
/* Solar Geometry */
SPACECRAFT SOLAR DISTANCE
                              = 149198530.8482 <km>
SC SUN POSITION VECTOR
                              = (177019.5545 < km > ,
                                  129282.632 <km>,
                                  -30577.63 < km > )
SC SUN_VELOCITY_VECTOR
                             = (8.6419 < km/s)
                                  -5.9494 < km/s > 
                                  -0.081262 < km/s > )
                              = "N/A"
ORBIT NUMBER
```


of

103

26/11/15 Issue

74

Page

JUNO/JIRAM

TARGET NAME = "MOON" TARGET_TYPE
TARGET_PIXELS = "SATELLITE" = 2977

/* COORDINATE SYSTEM */

COORDINATE SYSTEM NAME = "PLANETOGRAPHIC"

COORDINATE SYSTEM CENTER NAME = "MOON"

/* Geometry in "IAU_MOON" */

SUB_SPACECRAFT_LATITUDE = -7.9413 <degree>
SUB_SPACECRAFT_LONGITUDE = 36.1437 <degree>
SUB_SPACECRAFT_AZIMUTH = 336.3706 <degree>
SPACECRAFT_ALTITUDE = 010000 To the second seco SPACECRAFT ALTITUDE = 219609.2743 <km> TARGET_CENTER_DISTANCE = 221325.3557 <km>
SC_TARGET_POSITION_VECTOR = (177019.5545 <km>,

129282.632 <km>, -30577.63 < km >)

SC TARGET VELOCITY VECTOR = (8.6419 < km/s)-5.9494 < km/s >

-0.081262 < km/s >)SUB SOLAR LATITUDE = -0.59936 < degree>

SUB_SOLAR_LONGITUDE = 120.0207 <degree> = 272.559 <degree> SUB_SOLAR_AZIMUTH

GROUP = L BAND PARAMETERS

/* Illumination Filter L */ INCIDENCE_ANGLE = "N/A" EMISSION_ANGLE = "N/A" = "N/A" PHASE ANGLE

/* Image filter L parameters*/ $SLANT_DISTANCE = "N/A"$

= -74.3414 <degree>

MINIMUM_LATITUDE = -74.3414 <degree = "N/A" = -50.239 <degree> WESTERNMOST_LONGITUDE = 359.3692 <degree>

CENTER_LONGITUDE = "N/A"

EASTERNMOST_LONGITUDE = 0.61208 <degree> HORIZONTAL_PIXEL_SCALE = 52706.2258 <m/pixel> VERTICAL_PIXEL_SCALE = 52706.2258 <m/pixel>

NORTH_AZIMUTH = 2.3069 <degree>
LINE_FIRST_PIXEL = 2
SAMPLE_FIRST_PIXEL = 1 END GROUP = L BAND PARAMETERS

GROUP = M BAND PARAMETERS

/* Illumination Filter M */ INCIDENCE_ANGLE = "N/A" EMISSION_ANGLE = "N/A" = "N/A" PHASE_ANGLE

/* Image filter M parameters*/ SLANT_DISTANCE = "N/A"

MINIMUM LATITUDE = -32.2041 <degree>

CENTER_LATITUDE = "N/A"
MAXIMUM_LATITUDE = 84.7192 <degree> WESTERNMOST_LONGITUDE = 359.9758 <degree>

CENTER_LONGITUDE = "N/A"
EASTERNMOST_LONGITUDE = 0.019991 <degree> HORIZONTAL_PIXEL_SCALE = 52706.2258 <m/pixel>

Issue 7.0 26/11/15

JUNO/JIRAM

Page 75 of 103

```
VERTICAL PIXEL SCALE
                        = 52706.2258 <m/pixel>
  NORTH_AZIMUTH
LINE_FIRST_PIXEL
                         = 2.3069 <degree>
   SAMPLE_FIRST_PIXEL = 139
END GROUP = M BAND PARAMETERS
/* Instrument status */
                               = "1"
CHANNEL ID
                                               /* 0:SPECTRUM IR; 1:IMAGE */
FRAME_PARAMETER
                               = (1, 0)
FRAME PARAMETER DESC
       ("FRAME ACQUISITION RATE", "EXTERNAL REPETITION TIME")
EXPOSURE DURATION
                               = 0.004 < second>
INSTRUMENT MODE ID
                               = SCI_I1_S1
INSTRUMENT MODE DESC
"SCI I1 S1: Science, IMAGE(256x432) full acquisition, SPECTRUM (256x336) High
Spatial and High spectral"
OBJECT
                               = FILE
  RECORD TYPE
                               = FIXED LENGTH
   FILE RECORDS
                               = 256
   RECORD BYTES
                               = 1728
   FRAME TYPE
                               = "SCIENCE"
                               = "1 "
   DATA_QUALITY_ID
   DATA_QUALITY_DESC
                              = "0:INCOMPLETE; 1:COMPLETE"
^IMAGE
                               = "JIR_IMG_RDR-2013282T131633_V03.IMG"
/* Data Object pointers */
OBJECT
                              = IMAGE
  LINES
                              = 256
   LINE SAMPLES
                              = 432
   SAMPLE_TYPE
                              = IEEE REAL
   SAMPLE_BITS
                              = 32
END OBJECT
                               = IMAGE
OBJECT
                              = HISTORY
                             = "JIR IMG TOT RESPONSIVITY V01.DAT"
   CALIBRATION SOURCE ID
                              = "JIR IMG EDR 2013282T131633 V03.IMG"
   SOURCE PRODUCT ID
                              = " SUBTRACTION BACKGROUND ON BOARD ANABLE "
NOTE
END_OBJECT
                                  = HISTORY
SPICE FILE NAME
{"juno_sc_rec_131006_131012_v01.bc",
"juno_v07.tf",
"juno_jiram_v01.ti",
"naif0010.tls",
"pck00010.tpc",
"JNO_SCLKSCET.00018.tsc",
"de421.bsp",
"juno_struct_v01.bsp",
"jup230.bsp",
"spk_rec_131005_131014_131101.bsp"
END_OBJECT
                               = FILE
END
```


Issue 7.0 26/11/15

JUNO/JIRAM

Page **76** of **103**

A.9 RDR Label data SPE

```
PDS VERSION ID
                               = PDS3
/* Identification data elements */
DATA SET NAME
                               = "JUNO MOON JIRAM REDUCED DATA RECORD V3.0"
DATA SET ID
                               = "JNO-L-JIRAM-3-RDR-V3.0"
PRODUCT ID
                              = JIR SPE RDR 2013282T133644 V03
PRODUCT TYPE
                               = RDR
PROCESSING_LEVEL_ID
                               = "3"
START TIME
                               = 2013-10-09T13:36:41.187
STOP TIME
                              = 2013-10-09T13:36:41.387
SPACECRAFT CLOCK START COUNT = "1/434597868.3698"
SPACECRAFT_CLOCK_STOP_COUNT = "1/434597868.5698"

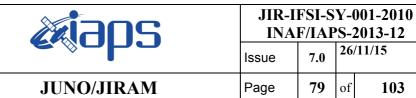
STANDARD_DATA_PRODUCT_ID = "SPECTRAL"

PRODUCER_FULL_NAME = "A_ADRIANI - R_NO
                              = "A. ADRIANI - R.NOSCHESE"
PRODUCER FULL NAME
                              = "ISTITUTO NAZIONALE DI ASTROFISICA"
INSTITUTION NAME
PRODUCT CREATION TIME
                              = 2015-11-23T17:50:50.000
PRODUCT_VERSION_ID
                               = "03"
COMMAND_FILE_NAME
                               = "jc029 JRMc.sasf"
SEQUENCE NUMBER
                               = 47
SEQUENCE_SAMPLES
                               = 65
MD5 CHECKSUM
                               = "75bdf58b3a5311487f8110135221bcb0"
/* Mission description parameters */
INSTRUMENT_HOST_NAME = "JUNO"
INSTRUMENT_HOST_ID
                               = "JNO"
                               = "INNER CRUISE 3"
MISSION_PHASE_NAME
/* Instrument description parameters */
                = "JOVIAN INFRARED AURORAL MAPPER"
INSTRUMENT NAME
                               = "JIR"
INSTRUMENT ID
INSTRUMENT_TYPE
                              = "INFRARED IMAGING SPECTROMETER"
SOFTWARE_VERSION_ID
                               = ("EGSE 208", "PDS RDR 01")
/* Celestial Geometry */
RIGHT ASCENSION
                               = 351.528 <degree>
                              = -15.472 < degree>
DECLINATION
TWIST ANGLE
                              = 158.8302 <degree>
CELESTIAL NORTH CLOCK ANGLE = 201.0198 <degree>
QUATERNION
                               = (0.30438,
                                    0.62153,
                                    -0.49707
                                    0.52342)
QUATERNION DESC
"Above parameters are calculated at the center time of the observation
which is 2013-10-09T13:36:41.287. The quaternion has the form:
w, x, y, z (i.e. SPICE format)."
/* Solar Geometry */
SPACECRAFT SOLAR DISTANCE
                              = 149209763.4829 <km>
SC SUN POSITION_VECTOR
                               = (-129644582.425 < km > ,
                                   -72057798.3614 <km>,
                                   16232924.4815 <km>)
SC_SUN_VELOCITY_VECTOR
                               = (-198.4025 < km/s >,
                                    337.4665 < km/s >
                                    -1.1345 < km/s > )
                               = "N/A"
ORBIT NUMBER
TARGET NAME
                               = "MOON"
```


26/11/15 Issue

JUNO/JIRAM Page 77 of 103

```
= "SATELLITE"
TARGET TYPE
TARGET PIXELS
                                   = 63
/* COORDINATE SYSTEM */
COORDINATE SYSTEM NAME
                                   = "PLANETOGRAPHIC"
COORDINATE_SYSTEM_CENTER_NAME = "MOON"
/* Geometry in "IAU MOON" */
/* Geometry
SUB_SPACECRAFT_LATITUDE
SUB_SPACECRAFT_LONGITUDE = 33.0698 <aeys
= 270 <aeys
= 224062.7156
                                  = -7.8088 < degree>
                               = 33.0698 <degree>
                                 = 224062.7156 <km>
TARGET_CENTER_DISTANCE = 225778.2568 <km> = (187453.1192 <km>,
                                       122049.7911 <km>,
                                       -30675.6881 < km > )
SC TARGET_VELOCITY_VECTOR
                                  = (8.6086 < km/s)
                                       -6.0091 < km/s >,
                                       -0.080858 < km/s > )
SUB SOLAR LATITUDE
                                 = -0.59895 < degree>
SUB_SOLAR_LONGITUDE
                                 = 119.8499 <degree>
SUB SOLAR AZIMUTH
                                  = 272.5174 <degree>
/* Illumination Filter */
INCIDENCE ANGLE
                                  = "N/A"
EMISSION ANGLE
                                  = "N/A"
PHASE_ANGLE
                                  = "N/A"
/* SPECTRUM parameters*/
SLANT DISTANCE
                                  = "N/A"
MINIMUM LATITUDE
                                  = 3.6797 <degree>
                                  = "N/A"
CENTER LATITUDE
                              = 10.3805 <degree>
= 357.8636 <degree>
= "N/A"
= 0.02719 <degree>
= 53775.0517 <m/pixel>
= 53775.0517 <m/pixel>
                                  = 10.3805 <degree>
MAXIMUM LATITUDE
WESTERNMOST_LONGITUDE
CENTER LONGITUDE
EASTERNMOST_LONGITUDE
HORIZONTAL_PIXEL_SCALE
VERTICAL_PIXEL_SCALE
                                 = 2.6738 <degree>
NORTH_AZIMUTH
LINE FIRST PIXEL
                                 = 50
                                  = 12
SAMPLE_FIRST_PIXEL
/* Instrument status */
CHANNEL ID
                                   = "0"
                                              /* 0:SPECTRUM IR; 1:IMAGE */
FRAME PARAMETER
                                   = (1,0)
FRAME_PARAMETER_DESC
INSTRUMENT_MODE_ID = SCI_I1_S1
INSTRUMENT_MODE_DESC = "SCI_I1_S1: Science"
       ("FRAME ACQUISITION RATE", "EXTERNAL REPETITION TIME")
" SCI_I1_S1: Science, IMAGE(256x432) full acquisition, SPECTRUM (256x336) High
Spatial and High spectral"
OBJECT
                                  = FILE
  RECORD_TYPE
                                  = FIXED_LENGTH
  FILE RECORDS
                                  = 256
  RECORD BYTES
                                  = 1344
  FRAME TYPE
                                  = "SCIENCE"
  DATA_QUALITY_ID
                                  = "1 "
```



26/11/15 Issue

JUNO/JIRAM

Page **78** of 103

```
= "0:INCOMPLETE; 1:COMPLETE"
  DATA QUALITY DESC
                                = "JIR_SPE_RDR_2013282T133644_V03.DAT"
^TABLE
OBJECT
                               = HISTORY
                               = "JIR_SPE_RESPONSIVITY_V1.1.DAT"
 CALIBRATION_SOURCE_ID
 SOURCE_PRODUCT_ID
                               = "JIR_SPE_EDR_2013282T133644_V03.DAT"
                              = " SUBTRACTION BACKGROUND ON BOARD ANABLE "
 NOTE
END OBJECT
                               = HISTORY
/* Data Object pointers */
OBJECT
                               = TABLE
                              = 256
 ROWS
 ROW BYTES
                              = 1344
 INTERCHANGE FORMAT
                              = BINARY
  ^STRUCTURE
                              = "JIR SPE RDR V02.FMT"
 COLUMNS
                              = 336
END OBJECT
                               = TABLE
SPICE FILE NAME
{"juno_sc_rec_131006_131012_v01.bc",
"juno_v07.tf",
"juno_jiram_v01.ti",
"naif0010.tls",
"pck00010.tpc"
"JNO_SCLKSCET.00018.tsc",
"de4\overline{2}1.bsp",
"juno_struct_v01.bsp",
"jup230.bsp",
"spk rec 131005 131014 131101.bsp"
END OBJECT
                                = FILE
END
```


26/11/15

103

of

7.0

79

A.10 Mission Phase Names

The following are the Juno Project's official names for the various phases of the mission.

Mission Phase Names	Start Time	Stop Time
LAUNCH	2011-08-05	2011-08-08
INNER CRUISE 1	2011-09-01	2011-10-10
INNER CRUISE 2	2011-10-10	2013-05-28
INNER CRUISE 3	2013-05-28	2013-11-05
QUIET CRUISE	2013-11-05	2016-01-05
JUPITER APPROACH	2016-01-05	2016-06-30
JUPITER ORBIT INSERTION	2016-06-30	2016-07-05
CAPTURE ORBIT	2016-07-05	2016-10-19
PERIOD REDUCTION MANEUVER	2016-10-19	2016-10-20
ORBITS 1-2	2016-10-20	2016-11-09
SCIENCE ORBITS	2016-11-09	2017-10-11
DEORBIT	2017-10-11	2017-10-16

Issue 7.0 26/11/15

JUNO/JIRAM

Page | 80 of 103

A.11 Label AUXILIARY DATA (EDR and RDR)

```
PDS VERSION ID
                               = PDS3
/* Identification data elements */
                      = "JUNO MOON JIRAM REDUCED DATA RECORD V1.0"
DATA_SET_NAME
                               = "JUNO-L-JIRAM-3-RDR-V1.0"
DATA_SET_ID
                              = "JIR-IMG-RDR-2013282T125523-V01.DAT"
SOURCE PRODUCT ID
PRODUCT TYPE
                              = " ENGINEERING DATA "
START TIME
                               = 2013-10-09T12:55:54.818
STOP TIME
                               = 2013-10-09T12:55:54.868
INSTRUMENT NAME
                               = "JOVIAN INFRARED AURORAL MAPPER"
INSTRUMENT ID
                               = "JIR"
INSTRUMENT HOST NAME
                               = "JUNO"
INSTRUMENT_HOST_ID
                               = "JNO"
PRODUCT CREATION TIME
                              = 2014-08-27T09:49:49.000
PROCESSING LEVEL ID
                               = "3"
                              = FIXED_LENGTH
RECORD_TYPE
RECORD_BYTES
                              = 72
FILE RECORDS
                              = 1
STANDARD DATA PRODUCT ID
                             = "AUXILIARY"
                              = "N/A"
ORBIT NUMBER
TARGET NAME
                              = "MOON"
TARGET TYPE
                               = "SATELLITE"
MD5 CHECKSUM
                               = "fdc08a7f94a6e99a16f4bfcadf34328e"
^TABLE
                               = "JIR_LOG_IMG_RDR_2013282T125523_V01.TAB"
OBJECT
                              = TABLE
 ROWS
                              = 1
                              = 72
 ROW BYTES
  COLUMNS
                              = 38
  INTERCHANGE_FORMAT
                              = BINARY
  DESCRIPTION
                              = "Binary Table listing parameter extracted
                                 from instrument housekeeping telemetry.
                                 This table is associated to a binary file
                                 containing instrument science telemetry."
  OBJECT
                              = COLUMN
                              = "PACKET IDENTIFICATION"
   NAME
                              = LSB_UNSIGNED_INTEGER
    DATA TYPE
    COLUMN NUMBER
    BYTES
    START BYTE
                              = "Location-independent name of the file
    DESCRIPTION
                                 containing the current frame"
  END_OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
                              = "LENGTH"
   NAME
   DATA_TYPE
                             = LSB_UNSIGNED_INTEGER
   COLUMN_NUMBER
                             = 2
   BYTES
                             = 2
    START BYTE
   DESCRIPTION
                             = "36936 (Maximum size)"
  END OBJECT
                             = COLUMN
```


OBJECT

NAME

DATA_TYPE

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

of

Issue 7.0 26/11/15

JUNO/JIRAM

= COLUMN

Page 81

103

= "SECONDS" NAME DATA TYPE = LSB UNSIGNED INTEGER COLUMN NUMBER BYTES START BYTE DESCRIPTION = "Datation of TM production time" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "SUBSECONDS" DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN NUMBER = 4 = 2 START BYTE = 9 = "Datation of TM production time, subsecond" DESCRIPTION = COLUMN END OBJECT = COLUMN OBJECT = "COUNTER" NAME = LSB UNSIGNED INTEGER DATA TYPE COLUMN_NUMBER = 2 BYTES START BYTE = 11 DESCRIPTION = "TM sequence counter" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "SUBMODE " DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN NUMBER = 6 = 1 BYTES = 13 START_BYTE = "Current Mode" DESCRIPTION = COLUMN END_OBJECT OBJECT = COLUMN = "MODE" NAME DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER = 1 BYTES START BYTE = 14 = "Current Mode" DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME = "ACQ_NUMBER" DATA_TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER = 8 = 2 BYTES START_BYTE = 15 = "Total number of acquisitions DESCRIPTION in the current session/sequence step Min=1; Max=65535" END_OBJECT = COLUMN OBJECT = COLUMN

= "ACQ COUNT"

= LSB_UNSIGNED_INTEGER

Issue 7.0 26/11/15

JUNO/JIRAM

Page **82** of **103**

```
COLUMN NUMBER
                             = 9
                             = 2
   BYTES
                             = 17
   START BYTE
                             = "Current acquisition number
  DESCRIPTION
        in the current session Min=1; Max= ACQ_NUMBER"
 END OBJECT
                            = COLUMN
OBJECT
                             = COLUMN
  NAME
                             = "ACQ_REPETITION"
  DATA TYPE
                            = LSB_UNSIGNED_INTEGER
  COLUMN NUMBER
                            = 10
  BYTES
                             = 1
                             = 19
  START BYTE
  DESCRIPTION
                             = "Number of SC revolutions between two
                                 acquisitions Min=1; Max=255"
END OBJECT
                             = COLUMN
 OBJECT
                             = COLUMN
  NAME
                             = "ACQ DURATION"
                            = LSB_UNSIGNED_INTEGER
  DATA TYPE
                             = 11
  COLUMN_NUMBER
  BYTES
                             = 1
                             = 20
  START_BYTE
  DESCRIPTION
                            = "Acquisition Cycle duration 0 = use SC
             Dynamics else Min=27; Max=255"
 END OBJECT
                             = COLUMN
 OBJECT
                             = COLUMN
  NAME
                             = "SUBFRAME NUMBER"
  DATA TYPE
                             = LSB UNSIGNED INTEGER
  COLUMN_NUMBER
                             = 12
                             = 2
  BYTES
                             = 21
   START BYTE
                             = "Total number of sub-frames
  DESCRIPTION
        for current acquisition phase Min=2; Max=6"
 END_OBJECT
                             = COLUMN
 OBJECT
                             = COLUMN
                             = "SUBFRAME"
  NAME
  DATA TYPE
                            = LSB BIT STRING
                            = 13
  COLUMN_NUMBER
  BYTES
                             = 2
                             = 23
   START BYTE
 OBJECT
                             = BIT COLUMN
                             = "SUBFRAME COUNT"
  NAME
   BIT DATA TYPE
                            = UNSIGNED INTEGER
  BITS
                             = 3
   START BIT
                             = 1
   DESCRIPTION
                             = "Current sub-frame in the current
         Acquisition Min=1; Max=6"
 END_OBJECT
                            = BIT_COLUMN
 OBJECT
                             = BIT_COLUMN
                             = "DATATION"
  NAME
  BIT_DATA_TYPE
                             = UNSIGNED_INTEGER
  BITS
                             = 1
  START BIT
                             = "Current sub-frame in the current
  DESCRIPTION
```

Acquisition Min=1; Max=6"

Issue 7.0 26/11/15

JUNO/JIRAM

Page

83 of

103

```
END OBJECT
                            = BIT COLUMN
OBJECT
                            = BIT COLUMN
                            = "WARN DATATION STEP"
  NAME
                            = UNSIGNED_INTEGER
  BIT DATA TYPE
                            = 1
  BITS
  START BIT
                            = "0= OK
 DESCRIPTION
                               1=Out of datation tolerance"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT COLUMN
                            = "FRAME ERROR FLAG"
 NAME
  BIT DATA TYPE
                            = UNSIGNED INTEGER
                            = 1
  START BIT
                            = 6
                            = "Flag used to signal there was
  DESCRIPTION
     a timeout error during the acquisition
        0 = ACQ OK
        1 = ACQ ERROR"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT_COLUMN
                            = "ACQ_TYPE"
 NAME
  BIT DATA TYPE
                             = UNSIGNED INTEGER
  BITS
                            = 3
  START BIT
  DESCRIPTION
                            = "Type of acquisition
        0 = Science
        1 = Double Science Frame 1
        2 = Double Science Frame 2
        3 = Background
        4 = Dark
        5 = Readout noise"
                            = BIT_COLUMN
END_OBJECT
OBJECT
                            = BIT COLUMN
                            = "CHANNEL_ID"
 NAME
  BIT_DATA_TYPE
                            = UNSIGNED_INTEGER
                            = 1
 BITS
  START BIT
                            = "Detector used for the current
  DESCRIPTION
                                Subframe
             0 = Spectrum IR
             1 = Image IR"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT COLUMN
 NAME
                            = "COMP_STATUS"
                            = UNSIGNED_INTEGER
  BIT_DATA_TYPE
  BITS
                            = 2
  START_BIT
                            = 10
  DESCRIPTION
                            = "Compression status of the current
        Subframe
                0 = Not compressed data
                1 = Compressed data
                2 = Not compressed data due to error"
END OBJECT
                            = BIT_COLUMN
                            = BIT_COLUMN
OBJECT
```


NAME

JIR-IFSI-SY-001-2010 **INAF/IAPS-2013-12**

26/11/15 Issue

= "SUBFRAME TYPE"

JUNO/JIRAM

84 of 103 Page

```
BIT DATA TYPE
                            = UNSIGNED INTEGER
                            = 3
 BITS
                            = 12
  START BIT
  DESCRIPTION
                            = "Type of subframe
            0 = ImSubFrame = 128 x144 pixel
            1 = SpSubFrameF = 128x112 pixel
            2 = SpSubFrameM = 64x112 pixel
            3 = SpSubFrameS = 16x112 pixel"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT COLUMN
                            = "ROW BACK SUBTRACTION"
 NAME
 BIT DATA TYPE
                            = UNSIGNED INTEGER
                            = 2
  START BIT
                            = 15
  DESCRIPTION
                            = "RICE subtraction
              0 = Subtraction disabled
              1 = Background subtraction on
              2 = Reference row subtraction on"
                            = BIT COLUMN
END OBJECT
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
 NAME
                            = "NOISY"
 DATA_TYPE
                            = LSB_UNSIGNED_INTEGER
 COLUMN NUMBER
                            = 14
 BYTES
 {\tt START\_BYTE}
                            = 25
OBJECT
                            = BIT COLUMN
 NAME
                            = "START NOISY BITS"
                            = UNSIGNED_INTEGER
 BIT_DATA_TYPE
 BITS
  START BIT
                            = 1
                            = "It is the echo of SP_START_NOISY_BITS
 DESCRIPTION
             Set to 0 in case of compression error or
             not compressed data or JPG compression"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT COLUMN
 NAME
                            = "END NOISY BITS"
                            = UNSIGNED INTEGER
 BIT DATA TYPE
 BITS
  START BIT
  DESCRIPTION
                            = "It is the echo of SP END NOISY BITS
         Set to 0 in case of compression error or not compressed
         data or JPG compression"
END_OBJECT
                            = BIT_COLUMN
OBJECT
                            = BIT_COLUMN
                            = "CR_ROW"
 NAME
                            = UNSIGNED_INTEGER
 BIT DATA TYPE
 BITS
                            = 4
  START_BIT
      DESCRIPTION
                                = "Compression reference rows offset
       It is the echo of SP\_CR\_ROW Range 0..15
       Not valid in case of not compressed data or JPG compression "
END_OBJECT
                            = BIT_COLUMN
```


Issue 7.0 26/11/15

JUNO/JIRAM

Page **85** of **103**

```
OBJECT
                              = BIT COLUMN
                              = "NOF NOISY BITS"
   NAME
   BIT_DATA_TYPE
                              = UNSIGNED INTEGER
                              = 4
   BITS
                              = 13
   START BIT
   DESCRIPTION
                              = "Number of used noisy bits
                   Set to 0 in case of compression error or not
      compressed data or JPG compression"
  END_OBJECT
                              = BIT_COLUMN
  END OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
   NAME
                              = "MIN PIXEL JPEG"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN NUMBER
                              = 15
   BYTES
                              = 2
   START BYTE
                              = 27
   DESCRIPTION
                              = "Min value for the pixel in JPEG
       compression. Not used in RICE"
  END OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
   NAME
                              = "MAX PIXEL JPEG"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN_NUMBER
                              = 16
   BYTES
                              = 2
    START BYTE
                              = 29
    DESCRIPTION
                              = "Max value for the pixel in JPEG
             compression. Not used in RICE"
  END OBJECT
                              = COLUMN
OBJECT
                              = COLUMN
                              = "TEXPO"
   NAME
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
                              = 17
   COLUMN NUMBER
                              = 2
   BYTES
    START_BYTE
                              = 31
   DESCRIPTION
                              = "Expo time for the used detector
                          Min=0;
                          Max=65535;
                          Res=0.2msec;"
 END OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "TDELAY"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN_NUMBER
                              = 18
   BYTES
                              = 2
    START_BYTE
                              = 33
   DESCRIPTION
                              = "Delay time for the used detector
                    Min = 0;
                    Max = 65535;
                    Res = 0.2msec;"
  END_OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
   NAME
                              = "SECONDS"
   DATA_TYPE
                              = LSB_UNSIGNED_INTEGER
```


COLUMN NUMBER

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

of

Issue 7.0 26/11/15

JUNO/JIRAM

= 19

Page 86

103

```
BYTES
                              = 4
                              = 35
   START BYTE
                              = "Datation of science and HK acquisition time
   DESCRIPTION
  (when the command of start acquisition is sent to the internal IF), second"
 END_OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "SUBSECONDS"
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
   COLUMN NUMBER
                              = 20
   BYTES
                              = 2
                              = 39
   START BYTE
   DESCRIPTION
                              = "Datation of science and HK acquisition time
(when the command of start acquisition is sent to the internal IF) subseconds"
 END OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "NADIR OFFSET"
                              = LSB_UNSIGNED_INTEGER
   DATA TYPE
                              = 21
   COLUMN_NUMBER
                              = 2
   BYTES
                              = 41
   START BYTE
                              = "Nadir offset angle (Deg/100) related
   DESCRIPTION
     to the current frame , calculated by the sw
   (For example NADIR OFFSET 1 + NADIR DELTA)"
 END_OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "BACKGROUND"
                              = LSB_UNSIGNED_INTEGER
   DATA TYPE
   COLUMN NUMBER
                              = 22
                              = 2
   BYTES
                              = 43
   START_BYTE
 OBJECT
                              = BIT COLUMN
                              = "BKG REPETITION"
   NAME
                              = UNSIGNED_INTEGER
   BIT_DATA_TYPE
   BITS
   START BIT
                              = "Period of Background acquisition
   DESCRIPTION
                   Min = 0;
                   Max = 50"
 END_OBJECT
                              = BIT COLUMN
 OBJECT
                              = BIT COLUMN
   NAME
                              = "EN DIS SUB"
   BIT DATA TYPE
                              = UNSIGNED INTEGER
   BITS
                              = 2
   START BIT
   DESCRIPTION
                              = "Background subtraction enabled
                          0 = EN
                          1 = DIS"
 END_OBJECT
                              = BIT_COLUMN
                              = BIT_COLUMN
 OBJECT
   NAME
                              = "BKG_RN"
   BIT DATA TYPE
                              = UNSIGNED_INTEGER
   BITS
   START_BIT
                              = 11
```


OBJECT

NAME

JIR-IFSI-SY-001-2010 **INAF/IAPS-2013-12**

of

103

26/11/15 Issue

87

Page

JUNO/JIRAM

DESCRIPTION = "Type of background 0=BKG 1=RN2=DARK" = BIT_COLUMN END_OBJECT OBJECT = BIT COLUMN = "EN DIS DOU SCI" NAME BIT_DATA_TYPE = UNSIGNED_INTEGER BITS = 3 = 14 START BIT = " DESCRIPTION 0 : EN 1 : DIS" END OBJECT = BIT COLUMN END OBJECT = COLUMN **OBJECT** = COLUMN = "WIN1 X" NAME = LSB_UNSIGNED_INTEGER DATA TYPE = 23 COLUMN NUMBER BYTES = 45 START BYTE DESCRIPTION = "X coordinates of the SPE win or IMG L band Win Min=0 Max 255 Res:1IDN=1pixel" END_OBJECT **OBJECT** = COLUMN NAME = "WIN1 Y" DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN NUMBER = 24BYTES START BYTE = 46 = "Y coordinates of the SPE win or DESCRIPTION IMG L band win Min=0 Max 255 Res:1IDN=1pixel" END OBJECT = COLUMN OBJECT = COLUMN = "WIN2 X" NAME DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER = 25 = 1 BYTES START BYTE = 47 = "X coordinates of the IMG M band win, 0 DESCRIPTION in the case of SPE Min=0 Max 255 Res:1IDN=1pixel" END OBJECT = COLUMN OBJECT = COLUMN NAME = "WIN2 Y" DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER = 26 = 1 BYTES START BYTE = 48 = "Y coordinates of the IMG M band win, 0 DESCRIPTION in the case of SPE Min=0 Max 255 Res:1IDN=1pixel" END_OBJECT = COLUMN

= COLUMN

= "DET_TEMP"

NAME

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

of

Issue 7.0 26/11/15

Page 88

103

JUNO/JIRAM

```
DATA TYPE
                              = LSB UNSIGNED INTEGER
                              = 27
    COLUMN NUMBER
                              = 2
    BYTES
    START BYTE
                              = 49
                              = "Temperature for the used detector
    DESCRIPTION
                Min=0; Max=16383; Res: 1DN=TBD K"
  END_OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
   NAME
                              = "STATUS"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN NUMBER
                              = 28
                              = 2
   BYTES
   START BYTE
                              = 51
  OBJECT
                              = BIT COLUMN
   NAME
                              = "STATUS DET"
    BIT DATA TYPE
                              = UNSIGNED INTEGER
   BITS
                              = 3
   START BIT
                              = 1
                              = "Detector status
   DESCRIPTION
                        0 = OFF
                        1 = ON
                        2 = AUTO
                        3 = NA"
  END OBJECT
                              = BIT_COLUMN
                              = BIT COLUMN
  OBJECT
   NAME
                              = "STATUS GAIN"
   BIT DATA TYPE
                              = UNSIGNED INTEGER
   BITS
    START BIT
                              = "Gain status for the detector
   DESCRIPTION
                          0 = \text{FOM}
                          1 = HIGH"
                              = BIT COLUMN
 END OBJECT
OBJECT
                              = BIT_COLUMN
                              = "M_STATUS_LOOP_ERROR_FLAG"
   NAME
   BIT_DATA_TYPE
                              = UNSIGNED_INTEGER
   BITS
    START BIT
    DESCRIPTION
                              = "Motor control loop error flag
                                 0 = OK
                                 1 = ERROR"
  END OBJECT
                              = BIT COLUMN
  OBJECT
                              = BIT_COLUMN
   NAME
                              = "M_STATUS_MOTOR_MODE"
    BIT_DATA_TYPE
                              = UNSIGNED_INTEGER
    BITS
                              = 1
    START_BIT
                              = 6
    DESCRIPTION
                              = "Despinning mode, acquired from FPA
                                 0 = POINT
                                 1 = DE-SPIN"
  END_OBJECT
                              = BIT_COLUMN
  OBJECT
                              = BIT COLUMN
```

= "M_STATUS_MOTOR_POWER"

START BIT

JIR-IFSI-SY-001-2010 **INAF/IAPS-2013-12**

of

103

26/11/15 Issue

89

Page

JUNO/JIRAM

= UNSIGNED INTEGER BIT DATA TYPE = 1 BITS = 7

DESCRIPTION = "Motor power status

0 = Motor power off 1 = Motor power on"

END OBJECT = BIT COLUMN

OBJECT = BIT COLUMN

NAME = "M_STATUS_ON_OFF" = UNSIGNED INTEGER BIT DATA TYPE

BITS = 1 = 8 START BIT

DESCRIPTION = "Motor status

0 = Motor off1 = Motor on"

END OBJECT = BIT COLUMN

OBJECT = BIT COLUMN = "SPARE" NAME

BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 7 ${\tt START_BIT}$ = 9

DESCRIPTION = "SPARE"

END OBJECT = BIT COLUMN

OBJECT = BIT COLUMN

NAME = "NADIR OFFSET SIGN" BIT DATA_TYPE = UNSIGNED INTEGER

BITS = 15 START BIT

= "UTC system format time corresponding DESCRIPTION to the SPACECRAFT ELAPSED TIME count"

END_OBJECT = BIT_COLUMN

END_OBJECT = COLUMN

OBJECT = COLUMN

= "S TELESCOPE MIRROR TEMP" NAME DATA TYPE = LSB_UNSIGNED_INTEGER

COLUMN_NUMBER = 29 BYTES = 2 START BYTE = 53

DESCRIPTION = "Telescope mirror temperature

Min=0; Max=16383; Res: See RD3"

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = "S_SLIT_TEMP"

= LSB UNSIGNED INTEGER DATA TYPE

COLUMN_NUMBER = 30= 2 BYTES = 55 START BYTE

= "Slit temperature DESCRIPTION Min=0; Max=16383; Res: 1DN=TBD K"

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = "S_SC_IF_TEMP"

OBJECT

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

103

Issue 7.0 26/11/15

JUNO/JIRAM

Page 90 of

DATA TYPE = LSB UNSIGNED INTEGER = 31 COLUMN NUMBER = 2 BYTES START BYTE = 57 = "Interface with the S/C temperature DESCRIPTION Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN OBJECT = COLUMN NAME = "S_COLD_RADIATOR_TEMP" = LSB UNSIGNED_INTEGER DATA TYPE COLUMN NUMBER = 2 BYTES START BYTE = 59 DESCRIPTION = "Cold radiator temperature Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN OBJECT = COLUMN NAME = "S SPECTROMETER MIRROR TEMP" DATA_TYPE = LSB_UNSIGNED_INTEGER COLUMN NUMBER = 33 = 2 BYTES START BYTE = 61 DESCRIPTION = "Spectrometer mirror temperature Min=0; Max=16383; Res: See RD3" END_OBJECT = COLUMN OBJECT = COLUMN NAME = "M MOTOR TS" DATA TYPE = LSB UNSIGNED INTEGER = 34 COLUMN NUMBER BYTES START BYTE = 63 = "Motor temperature DESCRIPTION Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN OBJECT = COLUMN = "M CAL SOURCE TEMP" NAME DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER BYTES = 2 START BYTE = 65 DESCRIPTION = "Lamp 1 (main) temperature Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN OBJECT = COLUMN NAME = "M DIFFUSER CAL TEMP" = LSB_UNSIGNED_INTEGER DATA_TYPE = 36 COLUMN_NUMBER = 2 BYTES START BYTE = 67 DESCRIPTION = "Calibration diffuser temperature Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN

= COLUMN

NAME

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

Issue 7.0 26/11/15

Page

91 of **103**

JUNO/JIRAM

= "M MOTOR START POS"

```
DATA TYPE
                              = LSB UNSIGNED INTEGER
                              = 37
    COLUMN NUMBER
                              = 2
    BYTES
                              = 69
    START BYTE
                              = "Motor point/despin start position
    DESCRIPTION
                 Min = 0 \ (-12.85714286 \ opt. \ deg);
                 Max = 16380 (12.85086496 \text{ opt. deg});
               Res: 0.00156948 deg (optical)"
  END_OBJECT
                              = COLUMN
  OBJECT
                              = COLUMN
   NAME
                              = "LAMP"
    DATA TYPE
                              = LSB UNSIGNED INTEGER
                              = 38
    COLUMN NUMBER
                              = 2
    BYTES
    START BYTE
                              = 71
  OBJECT
                              = BIT COLUMN
                              = "LAMP ID"
   NAME
                              = UNSIGNED INTEGER
    BIT_DATA_TYPE
    BITS
                              = 2
   START_BIT
                              = 1
PDS_VERSION_ID
                              = PDS3
/* Identification data elements */
DATA_SET_NAME
                = "JUNO MOON JIRAM REDUCED DATA RECORD V3.0"
DATA_SET_ID
                               = "JNO-L-JIRAM-3-RDR-V3.0"
PRODUCT_VERSION_ID
                               = "03"
SOURCE PRODUCT ID
                               = "JIR IMG RDR 2013282T130226 V03.IMG"
PRODUCT TYPE
                               = " ENGINEERING DATA "
START TIME
                               = 2013-10-09T13:02:24.667
STOP TIME
                               = 2013-10-09T13:02:24.677
SPACECRAFT CLOCK START COUNT
                               = "1/434595811.8493"
SPACECRAFT_CLOCK_STOP_COUNT
                               = "1/434595811.8593"
INSTRUMENT NAME
                               = "JOVIAN INFRARED AURORAL MAPPER"
                               = "JIR"
INSTRUMENT ID
INSTRUMENT_HOST_NAME
                               = "JUNO"
INSTRUMENT_HOST_ID
                               = "JNO"
PRODUCT CREATION TIME
                              = 2015-11-23T17:40:40.000
PROCESSING LEVEL ID
                               = "3"
RECORD TYPE
                               = FIXED LENGTH
RECORD BYTES
                               = 72
FILE RECORDS
                               = 1
STANDARD DATA PRODUCT ID
                              = "AUXILIARY"
ORBIT NUMBER
                               = "N/A"
                               = "MOON"
TARGET_NAME
                               = "SATELLITE"
TARGET_TYPE
MISSION PHASE NAME
                               = "INNER CRUISE 3"
                               = "6f499f83d40c7edc3c047545c70ad318"
MD5_CHECKSUM
^TABLE
                               = "JIR_LOG_IMG_RDR_2013282T130226_V03.TAB"
OBJECT
                              = TABLE
 ROWS
                              = 1
                              = 72
  ROW BYTES
  COLUMNS
                              = 38
  INTERCHANGE FORMAT
                              = BINARY
  DESCRIPTION
                              = "Binary Table listing parameter extracted
```


of

103

Issue 7.0 26/11/15

92

JUNO/JIRAM

from instrument housekeeping telemetry.

Page

This table is associated to a binary file containing instrument science telemetry."

```
OBJECT
                              = COLUMN
                              = "PACKET IDENTIFICATION"
   NAME
   DATA_TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN NUMBER
   BYTES
   START BYTE
   DESCRIPTION
                              = "Location-independent name of the file
                                 containing the current frame"
 END_OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "LENGTH"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
   COLUMN NUMBER
                              = 2
   BYTES
                              = 2
   START BYTE
                              = "36936 (Maximum size)"
   DESCRIPTION
 END OBJECT
                              = COLUMN
 OBJECT
                             = COLUMN
   NAME
                             = "SECONDS"
   DATA TYPE
                             = LSB UNSIGNED INTEGER
   COLUMN_NUMBER
   BYTES
   START BYTE
                             = 5
   DESCRIPTION
                             = "Datation of TM production time"
   ITEMS
                             = 2
   ITEM BYTES
                             = COLUMN
END OBJECT
OBJECT
                              = COLUMN
                              = "SUBSECONDS"
   NAME
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
   COLUMN_NUMBER
                              = 2
   BYTES
   START BYTE
                              = "Datation of TM production time, subsecond"
   DESCRIPTION
                              = COLUMN
 END_OBJECT
OBJECT
                              = COLUMN
                              = "COUNTER"
   NAME
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
   COLUMN NUMBER
                              = 5
   BYTES
                              = 2
   START_BYTE
                              = 11
   DESCRIPTION
                              = "TM sequence counter"
 END OBJECT
                              = COLUMN
                              = COLUMN
  OBJECT
                              = "SUBMODE "
   NAME
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
   COLUMN_NUMBER
                              = 6
   BYTES
                              = 1
   START BYTE
                              = 13
   DESCRIPTION
                              = "Current Mode"
 END_OBJECT
                              = COLUMN
```


Issue 7.0 26/11/15

JUNO/JIRAM

Page 93 of 103

```
OBJECT
                            = COLUMN
                            = "MODE"
  NAME
  DATA TYPE
                            = LSB UNSIGNED INTEGER
  COLUMN_NUMBER
                           = 1
  BYTES
  START BYTE
                           = 14
  DESCRIPTION
                           = "Current Mode"
END_OBJECT
                           = COLUMN
OBJECT
                            = COLUMN
                            = "ACO NUMBER"
  NAME
  DATA TYPE
                            = LSB UNSIGNED INTEGER
  COLUMN NUMBER
                            = 8
  BYTES
                            = 2
  START BYTE
                            = 15
  DESCRIPTION
                            = "Total number of acquisitions
     in the current session/sequence step Min=1; Max=65535"
END OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
                            = "ACQ COUNT"
  NAME
                            = LSB_UNSIGNED_INTEGER
  DATA_TYPE
  COLUMN NUMBER
  BYTES
                            = 2
  START BYTE
                            = 17
  DESCRIPTION
                           = "Current acquisition number
       in the current session Min=1; Max= ACQ_NUMBER"
END OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
                            = "ACQ_DURATION"
  NAME
  DATA_TYPE
                            = LSB_UNSIGNED_INTEGER
                            = 10
  COLUMN_NUMBER
                            = 1
  BYTES
  START BYTE
                            = 19
                           = "Acquisition Cycle duration 0 = use SC
  DESCRIPTION
             Dynamics else Min=27; Max=255"
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
                            = "ACQ REPETITION"
  NAME
  DATA TYPE
                            = LSB UNSIGNED INTEGER
  COLUMN_NUMBER
                            = 11
                            = 1
  BYTES
  START BYTE
                            = 20
  DESCRIPTION
                            = "Number of SC revolutions between two
                                acquisitions Min=1; Max=255"
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
  NAME
                            = "SUBFRAME_NUMBER"
                            = LSB_UNSIGNED_INTEGER
  DATA TYPE
  COLUMN NUMBER
                            = 12
                            = 2
  BYTES
  START BYTE
                            = 21
                           = "Total number of sub-frames
  DESCRIPTION
        for current acquisition phase Min=2; Max=6"
END_OBJECT
                            = COLUMN
```


103

Issue 7.0 26/11/15

JUNO/JIRAM

Page | **94** of

OBJECT = COLUMN = "SUBFRAME" NAME DATA TYPE = LSB BIT STRING = 13 COLUMN_NUMBER = 2 BYTES START BYTE = 23 OBJECT = BIT_COLUMN NAME = "SUBFRAME COUNT" = UNSIGNED_INTEGER BIT DATA TYPE BITS = 3 START BIT DESCRIPTION = "Current sub-frame in the current acquisition Min=1; Max=6" END OBJECT = BIT COLUMN OBJECT = BIT COLUMN = "DATATION" NAME BIT_DATA_TYPE = UNSIGNED INTEGER BITS = 1 = 4 START BIT = "Current sub-frame DESCRIPTION in the current acquisition Min=1; Max=6" END OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = "WARN DATATION STEP" BIT DATA TYPE = UNSIGNED INTEGER BITS START BIT = "0= OK DESCRIPTION 1=Out of datation tolerance" END_OBJECT = BIT_COLUMN OBJECT = BIT COLUMN = "FRAME ERROR FLAG" NAME BIT_DATA_TYPE = UNSIGNED_INTEGER BITS START BIT = 6 = "Flag used to signal DESCRIPTION there was a timeout error during the acquisition 0 = ACQ OK1 = ACQ ERROR" END_OBJECT = BIT_COLUMN OBJECT = BIT COLUMN NAME = "ACQ TYPE" BIT_DATA_TYPE = UNSIGNED_INTEGER BITS = 3 START BIT = 7 DESCRIPTION = "Type of acquisition 0 = Science 1 = Double Science Frame 1 2 = Double Science Frame 2 3 = Background 4 = Dark5 = Readout noise" END OBJECT = BIT COLUMN

OBJECT

NAME

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

of

103

Issue 7.0 26/11/15

95

Page

JUNO/JIRAM

= BIT_COLUMN = "CHANNEL_ID" = UNSIGNED_INTEGER

BIT_DATA_TYPE = UN BITS = 1 START_BIT = 10

DESCRIPTION = "Detector used for

the current subframe
0 = Spectrum IR
1 = Image IR"

END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = "COMP_STATUS"

BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 2 START_BIT = 11

DESCRIPTION = "Compression status

of the current subframe

0 = Not compressed data
1 = Compressed data

2 = Not compressed data due to error"

END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = "SUBFRAME_TYPE"

BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 2 START_BIT = 13

DESCRIPTION = "Type of subframe

0 = ImSubFrame = 128 x144 pixel
1 = SpSubFrameF = 128x112 pixel
2 = SpSubFrameM = 64x112 pixel
3 = SpSubFrameS = 16x112 pixel"
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = "ROW_BACK_SUBTRACTION"

BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 2 START_BIT = 15

DESCRIPTION = "RICE subtraction

0 = Subtraction disabled
1 = Background subtraction on
2 = Reference row subtraction on"
END_OBJECT = BIT_COLUMN

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = "NOISY"

DATA_TYPE = LSB_BIT_STRING

COLUMN_NUMBER = 14 BYTES = 2 START_BYTE = 25

OBJECT = BIT_COLUMN

NAME = "START_NOISY_BITS" BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 4
START_BIT = 1

DESCRIPTION

JIR-IFSI-SY-001-2010 INAF/IAPS-2013-12

Issue 7.0 26/11/15

JUNO/JIRAM

= "It is the echo

Page 96 of 103

```
of SP START NOISY BITS set to 0 in case of compression
         error or not compressed data or JPG compression"
      END OBJECT
                                   = BIT COLUMN
                                    = BIT COLUMN
      OBJECT
         NAME
                                    = "END NOISY BITS"
         BIT DATA TYPE
                                    = UNSIGNED INTEGER
         BITS
                                    = 4
         START BIT
                                    = "It is the echo
         DESCRIPTION
          of SP END NOISY BITS set to 0 in case of compression
          error or not compressed data or JPG compression"
        END OBJECT
                                    = BIT COLUMN
        OBJECT
                                    = BIT COLUMN
         NAME
                                    = "CR ROW"
         BIT DATA TYPE
                                    = UNSIGNED INTEGER
         BITS
                                    = 4
                                    = 9
         START BIT
                                    = "Compression reference
         DESCRIPTION
         rows offset It is the echo of SP CR ROW Range 0..15
         Not valid in case of not compressed data or JPG compression "
                                    = BIT_COLUMN
        END_OBJECT
       OBJECT
                                    = BIT COLUMN
         NAME
                                    = "NOF_NOISY_BITS"
         BIT_DATA_TYPE
                                    = UNSIGNED_INTEGER
         BITS
         START BIT
                                    = 13
                                    = "Number of used
         DESCRIPTION
         noisy bits, set to 0 in case of compression
          error or not compressed data or JPG compression"
                                    = BIT_COLUMN
        END_OBJECT
 END OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
                              = "MIN_PIXEL_JPEG"
   NAME
   DATA TYPE
                              = LSB_UNSIGNED_INTEGER
                             = 15
   COLUMN_NUMBER
   BYTES
                              = 2
   START BYTE
                             = 27
                              = "Min value for the pixel in JPEG
       compression. Not used in RICE"
 END_OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "MAX_PIXEL_JPEG"
   DATA TYPE
                             = LSB_UNSIGNED_INTEGER
   COLUMN NUMBER
                             = 16
   BYTES
                              = 2
                              = 29
   START_BYTE
                             = "Max value for the pixel in JPEG
   DESCRIPTION
             compression. Not used in RICE"
 END_OBJECT
                              = COLUMN
OBJECT
                              = COLUMN
   NAME
                              = "TEXPO"
   DATA_TYPE
                              = LSB_UNSIGNED_INTEGER
```


COLUMN NUMBER

OBJECT

JIR-IFSI-SY-001-2010 **INAF/IAPS-2013-12**

26/11/15

JUNO/JIRAM

= 17

Issue Page 97 of 103

```
= 2
   BYTES
                              = 31
   START BYTE
                              = "Expo time for the used detector
   DESCRIPTION
                          Min=0;
                          Max = 65535;
                          Res=0.2msec;"
                              = COLUMN
 END OBJECT
OBJECT
                              = COLUMN
   NAME
                              = "TDELAY"
   DATA TYPE
                              = LSB UNSIGNED INTEGER
                              = 18
   COLUMN NUMBER
   BYTES
                              = 2
   START BYTE
                              = 33
   DESCRIPTION
                              = "Delay time for the used detector
                    Min = 0;
                    Max = 65535;
                    Res = 0.2msec;"
                              = COLUMN
 END OBJECT
                              = COLUMN
 OBJECT
                              = "SECONDS"
   NAME
   DATA_TYPE
                              = LSB_UNSIGNED_INTEGER
   COLUMN_NUMBER
                              = 19
   BYTES
                              = 4
   START BYTE
                              = 35
   DESCRIPTION
                              = "Datation of science and HK acquisition time
  (when the command of start acquisition is sent to the internal IF), second"
 END OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
   NAME
                              = "SUBSECONDS"
   DATA_TYPE
                              = LSB_UNSIGNED_INTEGER
                              = 20
   COLUMN_NUMBER
                              = 2
   BYTES
                              = 39
   START BYTE
                              = "Datation of science and HK acquisition time
   DESCRIPTION
(when the command of start acquisition is sent to the internal IF) subseconds"
 END_OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
                              = "NADIR OFFSET"
   NAME
                              = LSB UNSIGNED INTEGER
   DATA TYPE
   COLUMN_NUMBER
                              = 21
                              = 2
   BYTES
   START BYTE
                              = 41
                              = "Nadir offset angle (Deg/100) related
      to the current frame , calculated by the sw
    (For example NADIR_OFFSET_1 + NADIR_DELTA)"
 END OBJECT
                              = COLUMN
 OBJECT
                              = COLUMN
                              = "BACKGROUND"
   NAME
                              = LSB BIT STRING
   DATA TYPE
   COLUMN_NUMBER
                              = 22
   BYTES
                              = 2
   START BYTE
                              = 43
```

= BIT_COLUMN

of

103

26/11/15 Issue

98

Page

JUNO/JIRAM

= "BKG REPETITION" NAME BIT_DATA_TYPE = UNSIGNED_INTEGER = 8 BITS START BIT = 1 = "Period of Background DESCRIPTION acquisition Min = 0;Max = 50"

END_OBJECT = BIT_COLUMN

OBJECT = BIT COLUMN = "EN DIS SUB" NAME = UNSIGNED_INTEGER BIT_DATA_TYPE

BITS = 2 START BIT

DESCRIPTION = "Background subtraction

enabled

0 = EN1 = DIS"

END_OBJECT = BIT_COLUMN

OBJECT = BIT COLUMN = "BKG_RN" NAME

= UNSIGNED_INTEGER BIT_DATA_TYPE

BITS START BIT = 11

DESCRIPTION = "Type of background

> 0=BKG 1=RN 2=DARK"

END_OBJECT = BIT_COLUMN

= BIT COLUMN **OBJECT** = "EN_DIS_DOU_SCI" NAME = UNSIGNED_INTEGER BIT_DATA_TYPE = 3 BITS

= 14 START BIT = " DESCRIPTION 0 : EN

1 : DIS"

END_OBJECT = BIT_COLUMN

END OBJECT = COLUMN

OBJECT = COLUMN = "WIN1 X" NAME

DATA TYPE = LSB UNSIGNED INTEGER

COLUMN NUMBER = 23 BYTES = 1 = 45 START_BYTE

= "X coordinates of the SPE win or IMG L band DESCRIPTION

Win Min=0 Max 255 Res:1IDN=1pixel" END_OBJECT = COLUMN

OBJECT = COLUMN = "WIN1_Y" NAME

DATA_TYPE = LSB_UNSIGNED_INTEGER

COLUMN NUMBER = 24**BYTES** = 1 START_BYTE = 46

26/11/15

JUNO/JIRAM

Issue Page 99 of 103

```
DESCRIPTION
                           = "Y coordinates of the SPE win or
IMG L band win Min=0 Max 255 Res:1IDN=1pixel"
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
                           = "WIN2_X"
 NAME
 DATA_TYPE
                           = LSB UNSIGNED INTEGER
                           = 25
 COLUMN NUMBER
                           = 1
 BYTES
 START BYTE
                           = 47
                          = "X coordinates of the IMG M band win, 0
 DESCRIPTION
  in the case of SPE Min=0 Max 255 Res:1IDN=1pixel"
                           = COLUMN
END OBJECT
OBJECT
                           = COLUMN
 NAME
                           = "WIN2 Y"
 DATA TYPE
                           = LSB UNSIGNED INTEGER
 COLUMN NUMBER
                           = 26
 BYTES
                           = 1
 START BYTE
                           = 48
                           = "Y coordinates of the IMG M band win, 0
 DESCRIPTION
      in the case of SPE Min=0 Max 255 Res:1IDN=1pixel"
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
 NAME
                           = "DET TEMP"
 DATA TYPE
                           = LSB_UNSIGNED_INTEGER
 COLUMN NUMBER
                           = 27
 BYTES
  START BYTE
                           = 49
                           = "Temperature for the used detector
 DESCRIPTION
             Min=0; Max=16383; Res: 1DN=TBD K"
END OBJECT
                           = COLUMN
OBJECT
                           = COLUMN
                           = "STATUS"
 NAME
                           = LSB_BIT_STRING
 DATA TYPE
                           = 28
 COLUMN_NUMBER
                           = 2
 BYTES
                           = 51
  START BYTE
                                = BIT COLUMN
     OBJECT
                                = "STATUS DET"
      NAME
      BIT DATA TYPE
                                = UNSIGNED INTEGER
                                = 3
      BITS
      START BIT
                                = 1
      DESCRIPTION
                                = "Detector status
                     0 = OFF
                     1 = ON
                     2 = AUTO
                     3 = NA"
     END_OBJECT
                                = BIT_COLUMN
                                = BIT_COLUMN
     OBJECT
                                = "STATUS GAIN"
      NAME
      BIT_DATA_TYPE
                                = UNSIGNED_INTEGER
      BITS
                                = 1
      START BIT
                                = 4
                                = "Gain status
      DESCRIPTION
       for the detector
```


of

103

26/11/15 Issue

100

Page

JUNO/JIRAM

1 = HIGH"END OBJECT = BIT COLUMN

OBJECT = BIT COLUMN

0 = LOW

NAME = "M STATUS LOOP ERROR FLAG"

BIT DATA TYPE = UNSIGNED INTEGER

BITS START BIT

DESCRIPTION = "Motor control loop

error flag

0 = OK1 = ERROR"

END OBJECT = BIT COLUMN

OBJECT = BIT COLUMN

= "M STATUS MOTOR MODE" NAME

BIT_DATA_TYPE = UNSIGNED INTEGER

BITS = 1 = 6 START BIT

= "Despinning mode, DESCRIPTION

acquired from FPA

0 = POINT1 = DE-SPIN''

END OBJECT = BIT COLUMN

= BIT_COLUMN **OBJECT**

NAME = "M_STATUS_MOTOR_POWER"

BIT DATA TYPE = UNSIGNED INTEGER

BITS START_BIT

= "Motor power status DESCRIPTION

0 = Motor power off 1 = Motor power on"

= BIT_COLUMN END OBJECT

= BIT_COLUMN **OBJECT**

= "M_STATUS_ON_OFF" NAME BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS START BIT = 8

DESCRIPTION = "Motor status

0 = Motor off1 = Motor on"

END_OBJECT = BIT_COLUMN

OBJECT = BIT COLUMN NAME = "SPARE"

BIT_DATA_TYPE = UNSIGNED_INTEGER

BITS = 7 = 9 START_BIT = "SPARE" DESCRIPTION

END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

= "NADIR_OFFSET_SIGN" NAME BIT_DATA_TYPE = UNSIGNED INTEGER

BITS = 1

103

Issue 7.0 26/11/15

JUNO/JIRAM

Page 101 of

START BIT = "UTC system format DESCRIPTION time corresponding to the SPACECRAFT ELAPSED TIME count" END OBJECT = BIT COLUMN = COLUMN END_OBJECT OBJECT = COLUMN NAME = "S_TELESCOPE_MIRROR_TEMP" = LSB_UNSIGNED_INTEGER DATA TYPE COLUMN NUMBER BYTES = 2 START BYTE DESCRIPTION = "Telescope mirror temperature Min=0; Max=16383; Res: See RD3" END OBJECT = COLUMN **OBJECT** = COLUMN = "S SLIT TEMP" NAME = LSB_UNSIGNED_INTEGER DATA TYPE = 30 COLUMN_NUMBER BYTES = 2 = 55 START_BYTE = "Slit temperature DESCRIPTION Min=0; Max=16383; Res: 1DN=TBD K" END OBJECT = COLUMN OBJECT = COLUMN NAME = "S SC IF TEMP" DATA TYPE = LSB UNSIGNED INTEGER COLUMN_NUMBER = 2 **BYTES** = 57 START BYTE = "Interface with the S/C temperature DESCRIPTION Min=0; Max=16383; Res: 1DN=TBD K" END_OBJECT = COLUMN OBJECT = COLUMN = "S_COLD_RADIATOR_TEMP" NAME DATA TYPE = LSB_UNSIGNED_INTEGER COLUMN_NUMBER BYTES = 2 START BYTE = 59 DESCRIPTION = "Cold radiator temperature Min=0; Max=16383; Res: 1DN=TBD K" END_OBJECT = COLUMN OBJECT = COLUMN = "S_SPECTROMETER_MIRROR_TEMP" NAME DATA_TYPE = LSB_UNSIGNED_INTEGER COLUMN NUMBER = 33 = 2 BYTES START_BYTE = 61 = "Spectrometer mirror temperature DESCRIPTION

Min=0; Max=16383; Res: See RD3"

= COLUMN

= COLUMN

= "M MOTOR TS"

= LSB_UNSIGNED_INTEGER

END_OBJECT

OBJECT

NAME

DATA_TYPE

26/11/15 Issue

JUNO/JIRAM

Page 102 103 of

```
COLUMN NUMBER
                            = 34
                            = 2
  BYTES
  START BYTE
                            = 63
 DESCRIPTION
                            = "Motor temperature
           Min=0; Max=16383; Res: 1DN=TBD K"
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
 NAME
                            = "M_CAL_SOURCE_TEMP"
                            = LSB_UNSIGNED_INTEGER
 DATA TYPE
 COLUMN NUMBER
 BYTES
                            = 2
  START BYTE
                            = 65
 DESCRIPTION
                            = "Lamp 1 (main) temperature
           Min=0; Max=16383; Res: 1DN=TBD K"
END OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
                            = "M_DIFFUSER_CAL_TEMP"
 NAME
 DATA TYPE
                            = LSB_UNSIGNED_INTEGER
 COLUMN NUMBER
                            = 36
 BYTES
                            = 2
 START BYTE
                            = 67
 DESCRIPTION
                            = "Calibration diffuser temperature
                  Min=0; Max=16383; Res: 1DN=TBD K"
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
 NAME
                            = "M MOTOR START POS"
  DATA TYPE
                            = LSB_UNSIGNED_INTEGER
 COLUMN NUMBER
                            = 37
                            = 2
 BYTES
 START_BYTE
                            = 69
                            = "Motor point/despin start position
 DESCRIPTION
               Min = 0 (-12.85714286 opt. deg);
               Max = 16380 (12.85086496 \text{ opt. deg});
             Res: 0.00156948 deg (optical)"
END_OBJECT
                            = COLUMN
OBJECT
                            = COLUMN
                            = "LAMP"
 NAME
  DATA TYPE
                            = LSB_BIT_STRING
                            = 38
 COLUMN NUMBER
                            = 2
 BYTES
  START_BYTE
                            = 71
     OBJECT
                                 = BIT COLUMN
       NAME
                                 = "LAMP ID"
       BIT_DATA_TYPE
                                 = UNSIGNED_INTEGER
       BITS
                                 = 2
       START_BIT
                                 = 1
                                 = "Calibration Source ID
       DESCRIPTION
                 0=Main ON
                 1=Redundant ON
                 2=Both ON
This is the echo of the TC_CALIBRATION devoted filed.
It is a do not care COLUMN if in SCI mode."

END OBJECT = BIT COLUMN
                                 = BIT_COLUMN
     END OBJECT
```


Issue 7.0 26/11/15

JUNO/JIRAM

Page 103 of 103

= BIT COLUMN OBJECT = "LAMP GAIN CURRENT 1" NAME BIT DATA TYPE = UNSIGNED INTEGER BITS = 6 START BIT = 3 = "Gain current DESCRIPTION for the main lamp. Min=0; Max=15 It is a valid filed only for the steps 3-4 of the CAL mode. It is a do not care COLUMN if in SCI mode and during the steps 1-2 and 5-6 of the CAL mode." END OBJECT = BIT COLUMN OBJECT = BIT COLUMN = "LAMP_GAIN_CURRENT 2" NAME BIT_DATA_TYPE = UNSIGNED INTEGER BITS = 6 START BIT = 9 = "Gain current for the redundant lamp. DESCRIPTION Min=0; Max=15 It is a valid filed only for the steps 3-4 of the CAL mode. It is a do not care COLUMN if in SCI mode and during the steps 1-2 and 5-6 of the CAL mode." END OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = "SPARE" BIT DATA TYPE = UNSIGNED INTEGER COLUMN NUMBER BITS = 2 START BIT = 15 = "SPARE" DESCRIPTION

= BIT_COLUMN

END_OBJECT = COLUMN

END_OBJECT

END OBJECT = TABLE

END