

#627

PIONEER VENUS

SPECIAL EVENTS DATA (SED) TAPE

78-051A-18A,19B,19C 78-078D-01A,02A,04A,05A,07A 78-078E-01A,02A,02B,02C,04A 78-078F-01A,02A,02B,02C,04A 78-078G-01A,02A,02B,02C,04A

Table of Contents

- 1. Introduction
- 2. Errata/Change Log
- 3. LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM
- 4. Catalog Materials
 - a. Associated Documents
 - b. Core Catalog Materials

1. INTRODUCTION:

The documentation for this data set was originally on paper, kept in NSSDC's Data Set Catalogs (DSCs). The paper documentation in the Data Set Catalogs have been made into digital images, and then collected into a single PDF file for each Data Set Catalog. The inventory information in these DSCs is current as of July 1, 2004. This inventory information is now no longer maintained in the DSCs, but is now managed in the inventory part of the NSSDC information system. The information existing in the DSCs is now not needed for locating the data files, but we did not remove that inventory information.

The offline tape datasets have now been migrated from the original magnetic tape to Archival Information Packages (AIP's).

A prior restoration may have been done on data sets, if a requestor of this data set has questions; they should send an inquiry to the request office to see if additional information exists.

2. ERRATA/CHANGE LOG:

NOTE: Changes are made in a text box, and will show up that way when displayed on screen with a PDF reader.

When printing, special settings may be required to make the text box appear on the printed output.

Version	Date	Person	Page	Description of Change
01				
02				

3 LINKS TO RELEVANT INFORMATION IN THE ONLINE NSSDC INFORMATION SYSTEM:

http://nssdc.gsfc.nasa.gov/nmc/

[NOTE: This link will take you to the main page of the NSSDC Master Catalog. There you will be able to perform searches to find additional information]

4. CATALOG MATERIALS:

a. Associated Documents	To find associated documents you will need to
	know the document ID number and then click here.
<u>http://</u> 1	nssdcftp.gsfc.nasa.gov/miscellaneous/documents/

b. Core Catalog Materials

PIONEER VENUS

SPECIAL EVENTS DATA (SED) TAPE

THIS DATA SET HAS BEEN RESTORED. THERE WAS ORIGINALLY ONE 9-TRACK, 1600 BPI TAPE, WRITTEN IN ASCII. THERE IS ONE RESTORED TAPE. THE DR TAPE IS A 3480 CARTRIDGE AND THE DS TAPE IS A 9-TRACK, 6250 BPI. THE TAPE WAS CREATED ON AN IBM 360 COMPUTER. THE DR AND DS NUMBERS ALONG WITH THE CORRESPONDING D NUMBER AND TIME SPAN IS AS FOLLOWS

DR#	DS#	DD#	DC#
DR03815	DS03815	D54638	C23664

ID#	FILES	TIME SPAN
78 - 051A - 18A 78 - 051A - 19B 78 - 051A - 19C 78 - 078D - 01A 78 - 078D - 02A 78 - 078D - 04A 78 - 078D - 05A 78 - 078D - 07A 78 - 078E - 01A 78 - 078E - 02A 78 - 078E - 02B 78 - 078E - 04A 78 - 078F - 01A 78 - 078F - 02B 78 - 078F - 02B 78 - 078F - 02B 78 - 078F - 02B 78 - 078F - 04A 78 - 078F - 04A 78 - 078G - 02B 78 - 078G - 02B 78 - 078G - 02C 78 - 078G - 02C 78 - 078G - 02A	11-15,33-52,61-70 54 55 1-2,59 53 28 3-6,29-30 7-8 16-17,59-60 32 32 32 22-23 20-21,56,57,59 31 31 31 31 22,25 18,19,56,58,59 27 27 27 22,24	$\begin{array}{r} 12 - 05/78 &- 10/21/81 \\ 12/09/78 &- 08/07/79 \\ 12/09/78 &- 08/07/79 \\ 12/09/78 \\$

*FILES 9,10,26,28, HAVE USELESS DATA

REW. AGENT PAR RAND NO. V0180 ACO. AGENT WSC

PIONEER VENUS

SPECIAL EVENTS DATA (SED) TAPE

This data set catalog consists of 1 tape containing 3 Pioneer Venus 1 and 20 Pioneer Venus Probes data sets. The tape is 9-track, 1600 BPI, ASCII with 80-byte card image records. It was created on NSSDC's MODCOMP IV computer from 2 blocked EBCDIC tapes created on the UADS (Unified Abstract Data System) IBM 360 computer. The following is a listing of the files ordered by data set ID with orbit numbers and time spans for each data set. The following pages contain a listing of the data set ID's with experiment and data set names, and a listing of the tape by file number and number of records.

The format for each data is either in the first file of a data set group or has been attached.

D-54638

C-23664

ID	FILES	TIME SPAN	ORBITS
78-051A-18A	11-15,33-52,61-70	12/05/78 - 10/21/81	1-740
78-051A-19B	54	12/09/78 - 08/07/79	5-246
78-051A-19C	55	12/09/78 - 08/07/79	5-246
78-078D-01A	1-2,59	12/09/78	5
78-078D-02A	53	12/09/78	5
78-078D-04A	28	12/09/78	5
78-078D-05A	3-6,29-30	12/09/78	5

ID	FILES	TIME SPAN	ORBITS
78-078D-07A	7-8	12/09/78	5
78-078E-01A	16-17,59-60	12/09/78	5
78-078E-02A	32	12/09/78	5
78-078E-02B	32	12/09/78	5
78-078E-02C	32	12/09/78	5
78-078E-04A	22-23	12/09/78	5
78-078F-01A	20-21,56,57,59	12/09/78	5
78-078F-02A	31	12/09/78	5
78-078F-02B	31	12/09/78	5
78-078E-02C	31	12/09/78	5
78-078F-04A	22 & 25	12/09/78	5
78-078G-01A	18-19,56,58-59	12/09/78	5
78-078G-02A	27	12/09/78	5
78-078G-02B	27	12/09/78	5
78-078G-02C	27	12/09/78	5
78-078G-04A	22 & 24	12/09/78	5

con't

Files 9,10 and 26 contain no useful information and should be ignored.

PIONEER VENUS SED TAPES

2

.

NSSDC ID	EXPERIMENT NAME	PI	DATA SET NAME
	SOLAR WIND PLASMA ANALYZER		SED DATE/VELOCITY DATA (ORBITS 1-740)
78-051A-19B	ATMOSPHERIC DRAG	KEATING	SED PV ATMOSPHERIC DRAG MODEL
70-0518-100	λΨΜΛΟΒΙΈΡΡΤΟ ΠΠλΟ	77 13 8 09 1 11/2	SED PV ATMOSPHERIC DRAG OBS-ORBS 5-246
78-078D-01A	ATMOSPHERIC DRAG ATMOSPHERIC STRUCTURE NEPHELOMETER GAS CHROMATOGRAPH	SEIFF	PRESSURE AND TEMPERATURE DATA
78-078D-02A	NEPHELOMETER	RAGENT	SED NEPHELOMETER BACKSCATTER CHANNEL DATA
78-078D-04A	GAS CHROMATOGRAPH	OYAMA	LOWER ATMOSPHERE COMPOSITION
78-078D-05A	INFRARED RADIOMETER	BOESE	SED PRE-ENTRY, DESCENT, & ONBOARD CALIBRATION DATA
78-078D-07A	SOLAR ENERGY PENETRATION	TOMASKO	SED SOLAR UP, DOWN, AND NET FLUX
78-078E-01A	ATMOSPHERIC STRUCTURE	SEIFF	SED LOW ATMOSPHERIC PROPERTIES
78-078E-02A	NEPHELOMETER	RAGENT	SED BACKSCATTER CHANNEL DATA
78-078E-02B	NEPHELOMETER	RAGENT	SED AMBIENT BACKGROUND RADIATION CHANNELS +
			SPECTRAL FUNCTIONS
78-078E-02C	NEPHELOMETER	RAGENT	SED TIME VS. TEMPERATURE DATA
78-078E-04A	INFRARED RADIOMETER	SUOMI	SED NET PLUX RADIOMETER DATA
78-078F-01A	ATMOSPHERIC STRUCTURE	SEIFF	SED LOW ATMOSPHERIC PROPERTIES
78-078F-02A	NEPHELOMETER	RAGENT	SED BACKSCATTER CHANNEL DATA
78-078F-02B	NEPHELOMETER	RAGENT	SED TIME VS. TEMPERATURE DATA
78-078F-02C	NEPHELOMETER	RAGENT	SED AMBIENT BACKGROUND RADIATION CHANNELS +
			SPECTRAL FUNCTIONS
	INFRARED RADIOMETER		SED NET FLUX RADIOMETER
78-078G-01A	ATMOSPHERIC STRUCTURE	SEIFF	SED LOW ATMOSPHERIC PROPERTIES
	NEPHELOMETER	RAGENT	SED BACKSCATTER CHANNEL DATA
78-078G-02B	NEPHELOMETER	RAGENT	SED AMBIENT BACKGROUND RADIATION CHANNELS +
			SPECTRAL FUNCTIONS
78-078G-02C	NEPHELOMETER	RAGENT	SED TIME VS. TEMPERATURE DATA
78-078G-04A	INFRARED RADIOMETER	SUOMI	SED NET FLUX RADIOMETER

PIONEER VENUS SED TAPE 001 FORMAT

	File	Filename	File Description	File Source	Logical Record Length (Bytes)	Physical Record Length (Bytes)	No. Physical Records in File
78-0783-0		LASDESC	LAS Data Description	ARC	80	<u>(0) (03)</u> 80	31
· - 11	2	LASDATA	Sounder Probe Lower Atm STR Data	ARC	600	80	598
78-0780-05	A-3	LIRDESC	LIR Data Description	ARC	50	80	52
11	4	LIRCALB	LIR On-board Calibration Data	ARC	63	80	63
ι,	5	LIRDESN	LIR Descent Data	ARC	500	80	494
15	6	LIRPRNT	LIR Pre-Entry Data	ARC	115	80	115
78-0780-07A	F 7	LSFRDOC	LSFR Data Description	U of Ariz	80	80	. 49
11	8	LSFRDAT	LSFR Flux Measure- ments	U of Ariz	80	` 80	378
	9	- MSM03SC -	Data Description of MSMODEL File	U of Bonn	. 80	80	8
	10	MSMODEL	Morning Side Model Rev. 3	U of Bonn	80	80	21
78-051A-18A	11	OPAPARAM	Description OPA File Contents	ARC	80	80	12
tı	12	OPA	PV Proton Params Outside Bow Shock	ARC	80	80	27
''	13	OPA2	PV Proton Params Outside Bow Shock	ARC	80	80	29
h	14	OPA3	PV Proton Params Outside Bow Shock	ARC	80	. 80	30
, li	15	OPA4	PV Proton Params Outside Bow Shock	ARC	80	80	32
78-078E.01A	16	SASDESC	SAS Data Description	ARC	80	80	28
L1	17	SASDATA	North Probe Lower Atm Str Data	ARC	300	80	234
T786-01A	18	SASDES1	SAS Day Probe Data Description	ARC	80	80	31

-1-

PIONEER VENUS SED TAPE OO1 FORMAT (CONTD)

<u><u> </u></u>		ne File Description	File Source	Logical Record Length (Bytes)	Physical Record Length (Bytes)	No. Physical Records in File
8-0766-01A1	9 SASDAT1	Day Probe Lower Atm Str Data	ARC	80	80	240
78-078F-018 21	D SASDES2	SAS Night Probe Dat Description	a ARC	80	80	28
L) 21	SASDAT2	Night Probe Lower Atm Str Data	ARC	80	80	238
22	SNFRDSC	Description of SNFR Data Files	U of Wisc	80	80	51
78-078E-04A 23	SNF R01	North Probe Net Flux Data	U of Wisc	80	80	62
78-0786-047 24	SNFR02	Day Probe Net Flux Data	U of Wisc	80	80	62
78-078F-04W 25	SNFR03	Night Probe Flux Data	U of Wisc	80	80	· 62
2 6	BNMSO	BNMS Data (Update O)	U of Bonn	80	80	
78 - U786 .02A1 B 27	DAYPRB	PV Day Probe Neph- elometer Data	ARC	80	80	61 5574
75-0780-04A 28	LGCDATA	LGC Atmospheric Composition Data	ARC	109	80	108
-78-0780-054 29	LIRDSC	LIR Description File	ARC	10	80	10
() 30	LIR002	Large Probe Infrared Radiometer	ARC	105	80	10 105
78-0787-024,0,31	NIGHTP	PV Night Probe Nephelometer Data	ARC	80	80	3005
-18-UT&E-D2A,B,C32	NORTHP	PV North Probe Nephelometer Data	ARC	80	80	2767
78-0517-18733		Color III (D	ARC	80	80	28
• 34	0PA125	PV Proton Params Outside Bow Shock	ARC	80	80	22
́ N 35	0PA156		ARC	80	30	22

-2-

PIONEER VENUS SED TAPE 001 FORMAT (CONTD)

	File	Filename	File Description	File Source	Logical Record Length (Bytes)	Physical Record Length (Bytes)	No. Physical Records in File
78-051A	- (8A-36	OPA187	PV Proton Params Outside Bow Shock	ARC	80	80	17
	37	OPA218	PV Proton Params Outside Bow Shock	ARC	80	80	24
÷	38	OPA282	PV Proton Params Outside Bow Shock	ARC	80	80	19
	39	0PA309	PV Proton Params Dutside Bow Shock	ARC	80	80	27
	40	OPA340	PV Proton Params Outside Bow Shock	ARC	80	80	20
	41	OPA371	PV Proton Params Outside Bow Shock	ARC	80	、 80	23
	42	0PA402	PV Proton Params Outside Bow Shock	ARC	80	80	13
	43	0PA433	PV Proton Params Outside Bow Shock	ARC	80	80	21
	44	0PA464	PV Proton Params Dutside Bow Shock	ARC	35	80	26
	45	0PA495	PV Proton Params Outside Bow Shock	ARC	35	80	22
	46	0PA526	PV Proton Params Outside Bow Shock	ARC	35	80	25
1	47	0PA557	PV Proton Params Outside Bow Shock	ARC	35	80	31
:	48	0PA588	PV Proton Params Outside Bow Shock	ARC	35	80	26
	49	OPA619	PV Proton Params Outside Bow Shock	ARC	[°] 35	80	20
	50	0PA650	PV Proton Params Outside Bow Shock	ARC	35	80	14
	51	0PA681	PV Proton Params Outside Bow Shock	ARC	35	80	22

-3.

PIONEER VENUS SED TAPE OO1 FORMAT (CONTD)

<u>Fil</u>		File Description	File Source	Logical Record Length (Bytes)	Physical Record Length (Bytes)	No. Physical Records in File
78-05/4181-52	OPA712	PV Proton Params Outside Bow Shock	ARC	80	80	22
78-6781-021 53	SOUNDP	PV Sounder Probe Nephelometer Data	ARC	80	• 80	10300
78-051A-198 54	VDRAGM	Drag Model Composi- tion and Density	Langley	80	80	149
78-0511-19- 55	VDRAGO	Drag Observations & Temperatures	Langley	80	80	209

No tape label. Single EOF separation. Three EOF's following last file.

-4-

Pioneer Venus SED pe 002 Format

ſ	File	Fil <u>ename</u>	File <u>Description</u>	File Source	Logical Record Length (Bytes)	Physical Record Length (Bytes)	No. Physical Records in File
56	1 78-078	F-DIA SASIN2	SAS Day and Night Probe Entry Data in SED	ARC	80	800	8
57	2 76-0	78F-0/ASASDAT5	SAS Night Probe Entry Data (Final)	ARC	80	800	136
58		th-old SASDAT6	SAS Day Probe Entry Data (Final)	ARC	80	800	100
59	4 6	S-018- S-018- SASIN3 - 019 - 10178-	SAS Day, Night, North Probe Entry Data is SED	ARC	80	800	10
les	5 78-0	18E-0/A SASDAT7	SAS North Probe Entry Data	ARC	80	800	79
61	6 78-05	SIA-18C OPAERR	SED FILE OPA897 Re- placed by OPA896	ARC	80	800	
62	7	OPA743	PV Proton Parameters Outside Bow Shock	ARC	80	800	26
63	8	0PA774	PV Proton Parameters Outside Bow Shock	ARC	80	800	25
64	9	0PA805	PV Proton Parameters Outside Bow Shock	ARC	80	800	12
45	10	0PA836	PV Proton Parameters Outside Bow Shock	ARC	80	800	7
66	11	0PA896	PV Proton Parameters Outside Bow Shock	ARC	80	800	16
67	12	0PA927	PV Proton Parameters Outside Bow Shock	ARC	80	800	27
48	13	0PA958	PV Proton Parameters Outside Bow Shock	ARC	80	800	23
69	14	0PA989	PV Proton Parameters Outside Bow Shock	ARC	80	800	21
70	15) OPA1020	PV Proton Parameters Outside Bow Shock	ARC	80	800	20

No tape label. Single EOF seperation. Three EOF's following last file.

7

Ż

٩.

-<

Endrane 5(d) 78-0785-011 78-0785-017 78-0785-017 78-0785-017 78-0785-017

NSSDC

Supporting Documentation ATMOSPHERE STRUCTURE EXPERIMENT DATA PIONEER VENUS ENTRY PROBE MISSION

Principal Investigator:

Alvin Seiff M.S. 245-1 Ames Research Center, NASA Moffett Field, CA 94035

Co-Investigator:	Donn B. Kirk	Ames Research Center, NASA
	Richard E. Young	Ames Research Center, NASA
· · ·	Simon C. Sommer	Ames Research Center, NASA
	Robert C. Blanchard	Langley Research Center, NASA

Name of Spacecraft: Pioneer Venus Large Probe and Small Probes (3). Name of Experiment: Comparative Atmosphere Structure Experiment

EXPERIMENT RATIONALE AND MOTIVATION

The primary objectives of the experiment were to measure the thermal structure of the atmosphere of Venus at the widely separated entry sites of the four Pioneer Venus probes with greater precision than previously available, and sufficient to define the contrasts in thermal structure with latitude and local clock hour. The expectation was that a successful definition of thermal contrasts could be related to and could provide insights into the atmospheric dynamics. It was also expected that details of the

Gudornie 's (d.)

thermal structure could clarify mechanisms responsible for the high temperatures in the deep atmosphere, and could help define the cloud properties and formation processes. A second objective was to define the thermal structure above the clouds and up through the mesosphere where experimental data were previously lacking.

Measured properties were probe stagnation pressure and atmospheric recovery temperature in probe descent, from altitudes within the clouds ~ 65 km to the surface. Probe aerodynamic deceleration was measured during and after the period of high speed entry into the atmosphere, from ~ 130 km altitude to the surface.

INSTRUMENT DESCRIPTION

A detailed description of the sensors, the measurement concepts and approach, and the instrument electronics, including operating and sampling modes etc., has been published in the following paper:

1. Seiff, A., D. W. Juergens, and J. E. Leptich, "Atmosphere Structure Instruments on the Four Pioneer Venus Entry Probes". IEEE Transactions on Geoscience and Remote Sensing, GE-18, 1, Jan, 1980.

Accuracy estimates are provided therein. Ten copies of this paper are enclosed with this submittal to NSSDC, and more are available on request. Additional information on sensing accuracy, and in-flight functioning of the instrument is given in the comprehensive report on this experiment, published in the JGR Special Issue on Pioneer Venus:

 Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G.
 M. Kelley, and S. C. Sommer, "Measurements of Thermal Structure and Thermal Contrasts in the Atmosphere of Venus, and Related Dynamical

Observations--Results from the Four Pioneer Venus Probes", JGR Pioneer Venus Special Issue, Dec, 1980.

Probe entry locations and local Venus times of entry are given in the above reference.

DATA ON FILE AT NSSDC

The data obtained in probe descent have been submitted to NSSDC as the four complete files, one for each probe, entered in the Pioneer Venus computer data system, designated UADS (Unified Abstract Data System) under Special Event Data (SED). These data consist of ground received times (GRT), derived altitudes (see ref. 2), atmospheric pressures, temperatures, and derived densities, and compressibility factors, zeta = $p/(\rho RT)$. A narrative also available in UADS with the data gives estimated accuracies, which are, on pressure and density, 0.5% of reading; on temperature, 1 K; and on altitude, 0.4% of reading.

The pressure data tabulated have been corrected for offsets and sensor non-linearities, and for probe dynamic pressure due to the velocity of descent. The temperature data have been corrected for zero offset, for amplifier drift, and for dynamic temperature effects due to probe velocity. No thermal corrections have been applied to the temperature data, but by virtue of the sensor design, these were small, of the order of 0.5 K to 1 K (see ref. 2). They are therefore of the same order as the instrumental measurement uncertainties.

Densities were derived from the equation of state by use of a mean molecular weight of 43.44, which corresponds to a composition (by mole fraction) of 0.965 CO_2 , 0.035 N_2 , 180 ppm SO_2 , 60 ppm Ar, and 30 ppm CO (ref. 2). Compressibility factors, zeta, taken from the NBS Tables for CO_2

by Hilsenrath et al., range from 0.999 at the highest altitudes to a minimum of 0.9925 around 25 km to a maximum of 1.009 at the surface.

Altitudes are referenced to 6052.0 km, which is the observed radius in the vicinity of the Large Probe (Sounder) landing site as determined by the Orbiter Radar Altimeter experiment. The associated uncertainty in radius is $\sim \pm 0.25$ km. The four probes did not land at a common elevation, so that for the three small probes, final data values are tabulated at the landed elevations, from ± 0.98 km to ± 0.65 km. The method used to define altitude, by integration of the equation of hydrostatic equilibrium, is described and evaluated in reference 2.

The data are based on the merging of two independent sets of data from redundant sensors (see ref. 1 and 2). Data entries for the Sounder probe are at 4 second intervals above 13 km, and at 32 sec intervals thereafter. For the three small probes, data intervals are 8 seconds in upper descent, 16 seconds in lower descent, and 32 seconds below 12 to 14 km. (See the narrative accompanying the data in UADS for further detail.) Below about 13 km, the temperature data were faulty, so in this region, extrapolated values are listed (see ref. 2 for a discussion of the extrapolation procedure).

CALIBRATION PROCEDURES

The temperature sensors were platinum resistance thermometers. They were calibrated in temperature baths against secondary standards at temperatures near 203, 273, 473, and 643 K. The calibration data were interpolated and extended by use of the resistance function of temperature for platinum, which is the basis of the International Practical Temperature Scale, IPTS--i.e., it is the current basis for definition of temperature in this range. Calibration accuracy is believed to be better than 0.05 K at the lower temperatures, and

Unclosure 5(d)

within 0.25 K over the full range. Calibrations were performed initially at the sensor level, and were repeated end-to-end with the electronics over a more limited temperature range, 253 to 393 K. These latter calibrations were used to select values of the electronics amplification factors, were used in decalibrating flight data. Reference readings taken during descent confirm that these amplification factors were stable within 0.25%, and corrections were applied for the small variations detected.

There were 12 pressure sensors on each probe, ranging from 80 mb full scale to 100 bars full scale. These were calibrated repeatedly over a period of months against secondary standards which had been calibrated against a dead-weight pressure source, i.e., a primary standard. The repeated calibrations were used to define long term drift rates and to eliminate sensors lacking stability. The knowledge of scale factor of the sensors flown is within ~ 0.25% or better. Sensor offsets at zero pressure were measured just prior to entry, and were known to within ~1 count or 0.2% of full scale on each range at the time of use in the Venus atmosphere.

The accelerometers were calibrated by means of their response to the earth's gravitational field, which had been measured at our several test sites by the USGS to within an accuracy of 0.2 ppm. The sensor calibrations at the several sites were consistent with the small differences in the gravitational acceleration at those sites. Calibrations were performed over a period of months to define stability. Of the 5 axial sensors flown, 4 were stable in scale factor over time periods of 3 months to within $\sim 0.01\%$, and the fifth showed a drift in 3 months of 0.11\%. Sensor biases were measured at zero input level just prior to entry. The bias stability of the sensors was of the order of 1 mg; i.e., the offset changes in descent could be of this order.

DATA ACCURACY BY PROBE AND BY ALTITUDE INTERVAL

Here, we summarize the regions where accuracy was limited by factors other than basic sensor capability.

anclosure 5(4)

Offset jumps were experienced in the pressure channels at the higher pressures during descent. These are attributed to current leakage through the solid state switches, used to select on-line sensors, at times when diaphragms burst on low range off-line sensors. The offset jumps were accurately defined and corrected for, and the data indicate that there was generally no drift in the offset. However, because of this factor, we estimate that the pressures above 50 bars (i.e., below 10 km altitude) could be in error by 1% of reading, rather than 0.5% of reading. This problem was particularly of concern on the Day Probe, on which one of the two on-line sensors exhibited drift at pressures > 50 bars. See Ref. 2 for further discussion.

Data from the two independent temperature sensors generally agree within ~ 1 K. On the Night Probe, at 550 K, the difference rose to 2 K, and reached 3 K at 620 K, just prior to loss of temperature data. Hence, the temperature uncertainty in data from this probe is slightly greater than for the other 3 probes in the deep atmosphere, below 23 km. We have heavily weighted the data from the free wire sensor on all probes, because its known thermal errors are < 0.5 K (see ref. 2), and this sensor was used in the deep atmosphere data from the Night Probe as well.

ENTRY DATA AT ALTITUDES TO 136 KM

These data are still being analyzed. We expect to have them ready for submittal to NSSDC by early summer, 1981.

DOCUMENTATION OF UADS CONTRIBUTIONS FROM OPA (ORBITS 1-365) The contributions to UADS of data from the Pioneer Venus Orbiter Plasma The contributions to UADS of data from the Pioneer Venus Orbiter Plasma Analyzer (OPA) consist of four parameters (when available) for each orbit: the reduced solar wind flow speed and proton number density observed just before the (first) inbound crossing of the bow shock of Venus, and the same quantities just after the (last) outbound crossing. <u>It should be noted that these quantities are-</u> <u>stored in the SED files</u> rather than in the LFD files. All four parameters are available for 77 of the first 365 orbits; in the remaining cases in the files fewer are given, either because the orbit is entirely inside the bow shock during the inbound or outbound leg, or both, or because valid parameter fits to the raw data could not be made for the required times. In particular, 127 of the orbits have no entries; 31 of these cases reflect absence of data near superior conjunction, and the remaining 96 are due to failure of fit or to data gaps.

Subar Vent

Chilsme S(F) PA

The reduced flow speed and density are obtained by a least-squares fit of a convecting isotropic Maxwellian proton velocity distribution, convolved through the instrument response function obtained from laboratory calibration, to the raw currents. The flow speed obtained by this procedure should normally be accurate (very conservative error bars would be $\pm 10\%$). The proton number density is generally less accurate (conservatively $\pm 50\%$).

Each SED file contains the data entered for 31 orbits. For each orbit for which data are given, the orbit number, times of measurement and reduced parameters are given. The units of velocity and and number density are, respectively, km/sec and protons/cm³. The times of measurement are given in hours and minutes UT at the spacecraft; the precise time refers to the completion of the OPA measurement cycle (approx. 9 minutes) of 45 spin periods. The time of measurement is always within two measurement cycles of the inferred shock crossing.

SED-1

Frittme 5 (A)

-18-535-0217 025 025

PIONEER VENUS NEPHELOMETER (LN/SN) EXPERIMENTS SOUNDER, DAY, NIGHT AND NORTH PROBES

DESCRIPTION OF DATA STORED IN UNITED ABSTRACT DATA SYSTEM (UADS)

BORIS RAGENT AMES RESEARCH CENTER MOFFETT FIELD CA 94035 and JACQUES E. BLAMONT SERVICE D'AERONOMIE DU CENTRE

NATIONAL DE LA RECHERCHE SCIENTIFIQUE

91, VERRIERES, FRANCE

1.0 INTRODUCTION

This document describes the Pioneer Venus multi-probe nephelometer experiments data that are stored in the United Abstract Data System (UADS). A description of the mission parameters, probe characteristics, nephelometer experimental equipment, calibration procedures and presentations and interpretations of the data are given in Colin and Hunten, 1977, Colin, 1979, Ragent et al., 1980, and Ragent and Blamont, 1980.

Enclosure JA.

Each of the probes that entered the atmosphere of Venus on December 8, 1978 at approximately 18 hours 59 minutes GMT carried an identical nephelometer experimental package. The nephelometer made measurements of the ambient atmospheric scattering cross section at an angle of approximately 172.5° to an incident light beam at a wavelength of about 900 nanometers, and also measured the ambient brightness of the atmosphere in two spectral channels. Internal experimental parameters were also monitored during the descent of the probes. The data received for each of these experiments from each of the probes (sounder, day, north and night) have been tabulated as a function of ground received time and entered into the UADS system. In order to correlate the ground received times with absolute altitude for each probe the user is referred to the data listings for the atmospheric structure (LAS/SAS) experiments tabulated in the UADS files.

The following sections describe these entries and the additional information that has been entered into the UADS listings giving the individual experimental parameters peculiar to that experiment.

2.0 BACKSCATTER CHANNEL

Appendix A is a sample listing of a portion of the data listed in the UADS system for the measured backscatter cross sections obtained during the descent of

12.2

Enclosure 5 (a)

the night probe. The first portion of the listing under section 1.1 is a tabulation of the angular weighting or sensitivity function, f (9), for the nephelometer as a function of scattering angle with respect to the direction of propagation of a nearly monochromatic incident light beam ($\Delta\lambda$ =20 nanometers) at a wavelength, λ , of approximately 900 nanometers. This weighting function has been normalized so that

 $\int_{0}^{100} f(\theta) d\theta = 1$

Eq (2-1)

Under section 1.2 the actual measured cross sections are listed in units of $m^{-1}sr^{-1}$ as a function of ground reserved time (GMT). The data as listed also include the data baseline offsets, in order to illustrate the fluctuation of the data and to give some indication of baseline drift during the descent of the probe. It is necessary to subtract these baseline offsets from the data in order to obtain the true cross section. An accurate estimate of this baseline offset may be obtained by noting the value of the listed cross section in a relatively scattering-free region of the atmosphere, for example at times corresponding to altitudes below 30 kms (times after 19 hours 13 minutes for the night probe, for example). (A very slight correction for baseline drift due to instrument temperature changes has not been included in these data since the overall correction from entry to impact is of the order of one unit of binary quantization.)

The first data listed for each of the probes are readings of a monitoring target placed in the field of view of the instrument. This target is automatically removed from the field of view of the instrument upon instrument deployment as noted by the comment "Window Cover Open" for the day, north and night probes, or "Aeroshell Deployed" for the sounder probe. For several of the probes the time of impact is noted, and in the case of the day probe the data are

p.3

Enclosure 3(a)

tabulated from entry through impact and post-impact to instrument or probe failure.

3.0 AMBIENT BACKGROUND RADIATION CHANNELS

Appendix B is a sample listing of a portion of the data listed in the UADS system as received for the night probe "uv" and "visible" channels used to detect ambient radiation. As shown in the listing under section 2.1 the instrument reading, E, in either channel in "H", or instrument, units is given by

$$E_{uv,vis} = \int_{\lambda} R_{uv,vis}(\lambda) I(\lambda) d\lambda$$

Eq (3-1)

where $R_{uv,vis}$ is the spectral response function for the uv or visible channels respectively in "H" units - $uw^{-1}-m^{+2}-sr^{+1}$, and I(λ) is the ambient specific inensity in $uw - m^{-2}-sr^{-1}-nm^{-1}$ and λ is measured in nanometers.

Values for R (λ) as a function of λ are tabulated for both the uv and visible channels. Note that in addition to the main pass bands both channels had substantial spectral "leaks" at other wavelengths.

The readings obtained in the uv and visible channels are next tabulated under section 2.3. The times of window cover opening (day, night and north probes) or aeroshell deployment (sounder probes) are noted. For these data, again, the baseline offset has not been subtracted from the data presented so that the user may attempt to note small deviations from the baseline. Baseline offset values are approximately those values recorded by the instrument prior to window cover opening or aeroshell deployment. In one case (north probe) it will be noted that the baseline offset was zero or less and is tabulated as zero. For that case the baseline offset value could be reconstructed using calibration cycle data (not tabulated here) and the user is requested to consult the data

P. 4

Enclosure 5(a)

shown in Ragent and Blamont, 1980, for the actual offset.

Because of spectral variations in the value of I (λ) as a function of altitude and the complex form of R(λ), consisting of several spectral pass bands, it is necessary to solve for I (λ) using equation 3-1 and models for the variation of the spectral shape and magnitude of the ambient radiation as a function of altitude.

Again all of the data received from each of the probes are tabulated from instrumental deployment until instrument or probe failure occurred.

4.0 INSTRUMENT TEMPERATURE

A sample of the housekeeping data of the instrument is tabulated in the UADS system as shown in Appendix C. This listing of temperature of the instrument at the location of the light emitting diode (LED) versus ground received time (GMT) is provided to indicate the range of internal environmental conditions experienced by the instrument.

p. 5

. Enclosure 3(a)

REFERENCES

Colin, L. and Hunten, D. M. (eds.), Pioneer Venus Experiment Descriptions, Space Science Reviews, 20, 451-525, June 1977.

Colin, L., Encounter with Venus, Science, 203, 743-745, Feb. 23, 1979.

Ragent, B., Wong, T., Blamont, J. E., Eskovitz, A. J., Harnett, L. M., and Pallai, A., Pioneer Venus Sounder and Small Probes Nephelometer Instrument, IEEE Trans. Geoscience and Remote Sensing, GE-18, 1, 111-117, Jan. 1980.

Ragent, B. and Blamont, J., The Structure of the Clouds of Venus: Results of the Pioneer Venus Nephelometer Experiment, JGR, in press.

p.6

PICHEER-VENUS NIGHT PRODE NEPHELOHETER (SN) EXPERIMENT

APPENDIX A

1.0 BACKSCATTER CHANNEL

ļ

1.1 ANCULAR WEIGHTING (NICHT PROBE) FUNCTION, F(THETA), FOR DACKSCATTER CHANNEL NORMALIZED SO THAT

INTEGRAL [F(THETA)D(THETA)] = 1

ANCLE (DEC)	F(THETA)
180.0 179.6	0. 0.011
178.0	
177.0	0.022
176.0	0.057
175.0	0.067
174.0	0.116
173.5	0.127
173.0	0.135
172.5	0.138
172.0	. 0.137
171.5	0.133
171.0	0.125
170.0	0.101
169.0	0.069
168.0	0.042
167.0	0.024
166.0	0.012
165.0	0.007
164.0	0.005
163.0	0.004
162.0	0.003(5)
161.0	0.003
160.0	0.002
159.0	0.001
158.0	0.001
157.0	0.000

2. BACKSCATTER CHANNEL DATA (NIGHT PROBE)

NOTE: PLEASE SEE DATA OF ATMOSPHERIC STRUCTURE EXPERIMENT (SAS) TO OBTAIN ALTITUDE VS. TIME PROFILES

CMT (HR: MIN: SEC)	BACKSCATTER
(IIII IIII SEC)	(1/M-STER)
18:58.20.6	3.12E-02
18:58.20.6	3.12E-02
BLACKOUT	REGION
18:59:48.6	3.12E-02
na an an an a shahar a an an an an an an a	
18:59:49.6	2.95E-02
WINDOW COV	ER OPEN
18:59:50.6	1.31E-04
18:59:52.6	1.31E-04
18:59:54.6	1.31E-04
18:59:55.6	1.31E-04
-18:59:56.6	1.31E-04
3:59:57.6	1.S1E-04
18:59:58.6	1.31E-04
19:0:.6	1.39E-04
19: 0: 1.6	1.31E-04
19: 0: 2.6	1.31E-04
19: 0: 3.6	1.31E-04
19: 0: 4.6	1.31E-04
19: 0: 5.6	1.56E-04
19: 0: 6.6	1.56E-04
10	

File 31

1-1

:078F-02A

p.T

1		APTENDAN D		
INPACT?				
19:54:55.0 4.	92E-03			
		· ·	.'	· ·
2.0 ANDIENT BACKGR	COUND RADIATION CH TH PROBE)	ANNELS		
			78-0751	T no A
1 SPECTRAL FUNCT	TIONS		10 0131	C. A. Com
2.1.1 DEFINITIONS	· . ·	· · · ·	·. ·	e e de la companya de
			, · ·	
E(OUT) = INTEGRAL	[R(LAMBDA)I(LAMBI	DA)D LAMBDA]		
WHERE	,		.*	•
	· · · · ·			
E(OUT) = NEPHELOME	TER READING IN "H	UNITS	•	
R(LAMBDA) = SPECTRAL	FUNCTION IN "H" IT	NUTS /MICROWATT/METER	SOUARED-STERADIAN	
			o quindo o i diamanti,	
······································		ant an an an an an an an an an air air an		المحاجب أحجاب أأحجب
	· .		· · · · · · · · · · · · · · · · · · ·	•
· · ·	•			
I(LAMBDA) = SPECIFI	C INTENSITY OF AM	BIENT LICHT	• •	
• IN MICR	O WATTS-METER SQ	STERADIAN/ NANO METER	S	•
LAMBDA = WAVELENGT		· · · · · ·		
```			▲ · · · · · · · · · · · · · · · · · · ·	•
2.2" TABULATIONS OF	R VERSUS LAMBDA I	FOR UV (BG1)	· . · · ·	•
2.2.1 UV (BG1) CHAN	SIBLE (BG2) CHANNI NEL	EL	•	•
LANBDA		R .		
(NANOHETERS)	H UNITS/ MICRO	R WATTS/METER SQ-STERADI	AN)	
320	0.7E-04			
325	1.8E-04		•	
330 335	4.1E-04			•
340	8.0E-04 12.2E-04		· .	· · · · · · · · · · · · · · · · · · ·
345	16.3E-04	· ·		
350 355	20.1E-04		•	
360	23.6E-04 24.8E-04		· ·	
365	25.1E-04			
370 375	24.6E-04	•	• .	
380	20.6E-04 12.4E-04	х	•	
385	5.5E-04		•	
390	0.0E-04			
680	0.0E-04			•
700	0.6E-04	· · ·	<b>,</b>	•
710 720	1.5E-04 2 BE-04	·	•	
730	2.8E-04 5.0E-04			•
740 750	7.6E-04		· · ·	•
760	7.6E-04 3.5E-04	•	•	·
770	1.8E-04			• · · ·
780 790	0.6E-04			
809	0.3E-04 0.2E-04			•
850	0.8E-04		•	•
900 950	1.6E-04			•
1000	1.9E-04 1.6E-04	•	•	
1050	1.1E-04			•
1100 1150	0.8E-04		•	•
	0.2E-04		,	
2.2.2 100000				•
2.2.2 VISIBLE (BG2) C LAMEDA	HANNEL			
	R UNITS/MICROMATTS	METER SQ-STERADIAN)		•
460	0.9E-04	TERADIAN)		
470 480	2.6E-04	· D		
490	5.6E-04 11.0E-04	P. 8	· .	
500	18.7E-04			·
510 520	24.9E-04			
020	<u>31.7E-04</u>			

.

,

.

.

.

320		6.64-64
325		1.8E-04
330		4.1E-04
335	· · ·	8.0E-04
340		12.2E-04
345		16.3E-04
350		20.1E-04
355		23.6E-04
360		24.8E-04
365		25.1E-04
370		24.6E-04
375		20.6E-04
380		12.4E-04
385	•	5.5E-04
390		0.0E-04
• • •	•	· · · · · · · · · · · · · · · · · · ·
680		0.0E-04
700	•	0.6E-04
710		1.5E-04
720	••	2.8E-04
730	,	5.0E-04
740		7.6E-04
750		7.6E-04
760	•	3.5E-04
770		1.8E-04
780	- -	0.6E-04
790		0.3E-04
800	•	<b>0.2E-04</b>
850		0.8E-04
900		1.6E-04
950	•	1.9E-04
1000		1.6E-04
1050		1.1E-04
1100		0.8E-04
1150	· · ·	<b>9</b> .2E-04

2.2.2 VISIBLE (BG2)	CHANNEL
LAMBDA	R
(NANOMETERS)	(H UNITS/MICROWATTS-SQ METER-STERADIAN)
460	0.9E-04
470	2.6E-04
480	5.6E-04
490	11.0E-04
500	18.7E-04
510	24.9E-04
520	31.7E-04
530	32.8E-04
540	30.1E-04
550	25.1E-04
560	18.3E-04

		×
570		12.1E-04
580		7.3E-04
590		4.2E-04
600		2.2E-04
610		1.1E-04
620		0.6E-04
620		0.4E-04
640		0.3E-04
650		6.2E-04
660		0.1E-04
670		0.0E-04
800		0.03E-04
850		• 0.47E-04
900		0.95E-04
950		0.96E-04
1009		0.64E-04
1050		0.40E-04
1100		0.33E-04
1150		0.09E-04
AIRIENT	DADIATION	(NICHT DROBE)

2

#### AUBIENT RADIATION (NIGHT PROBE)

t GHT (HR: MIN: SEC)	BACKGROUND 1 E, UV CHANNEL "H" UNITS	BACKGROUND 2 E.VISIBLE CHANNEL "H" UNITS
10:59:48.8 10:59:49.8	6.00E+00	5.00E+00

p.9

		and the second second	<b>с</b> с. <u>№</u> то.,				d start	NOLL D		
		19:54:40.0 19:54:44.0		1.60	)E+01			~		
		19:54:48.0	3.20E+01		)E+01					
		19:54:54.0 19:54:56.0	3.20E+01							•
	3.				E+01			00	···) (*** <b>1***</b>	
	<b>ب ل</b> ب		RTH PROBE)	AT LED LOC	ATION	-		78-0	Tot.	-02B
		TIME		TEMPERAT	TIBE					
		( CHT)		(DEC CENTI	GRADE)			•		- · ·
		18:59:52	.0	-1.01					•	
		19:00:48 19:03:40	.0 ·	-0.67			•		· ·	
		19:05:20	.0	-0.34 0.00			•			
		19:07:36 19:09:28		0.34	•	•		•		
		19:11:28	.0	0.67			· · · ·			
		19:12:48	.0	1.34				•		
-		An commune commune								•
		_				•••		يستعيدهم فكالمألة كالأكاف بالمراد		
		<b>19:14:16</b> . 19:17:53.		1.68				· · ·		
		19:18:57.	5	2.69 3.02		•			_	н 1
		19:20:33. 19:21:05.		3.36	-		·			
		19:21:53.	5	3.69						•
		19:22:41. + 19:23:29.	5	4.37						
		19:24:49	5	4.71 5.38						•
		19:25:37. 19:26:19.	5	5.71						
		19:26:57.	6.	6.05				• •		
		19:27:29. 19:28:01.	6	6.72	* • · · ·					
		19:29:05.	6	7.06						· .
		19:29:37. 19.30.09;	6	8.07						· .
•		19:30:41.	6	8.40 8.74				·		
		19:31:13. 19:31:29.	6	9.08				•		
		19:32:01.	6	9.41 9.75	•	•				
		19:32:33. 19:33:21.	6 6	10.00			•			
	;	19:33:53.0	6	10.76 11.09	•					
		19:34:09.0 19:34:41.0	6	11.43			•	•	•	• • • •
		19:35:13.0	б	11.76 12.10					٠ ·	•
		19:35:29.0 19:36:01.0	6	12.44						
		19:36:17.0	<b>6</b> .	12.77 13.11			1997 - S			•
		19:36:33.0 19:37:37.0	6	13.45		<i>.</i> .				•
		19:34:53.6	5	14.12 14.45	· · ·			•		
		19:38:09.0 19:38:41.0	5	14.79			. 1		•	• • • •
		19:38:57.6	5	15.13 15.46				•	-	
		19:39:13.6 19:39:45.6		15.80	•				•	•
		19:40:01.6	, ,	16.13 16.47						
		-19:40:17.6 19:40:49.6		16.81			•			
		19:41:05.6		17.14 17.48						•
		19:41:53.6 19:42:09.6		18.15						•
		19:42:25.6		18.49 18.82	. •	•			•	
		19:42:41.6		19.16					'	• .
		19:43:13.6		19.50 19.83						
		19:43:45.6 19:44:01.6		20.17				,		
	<i></i>	19:44:17.6		20.50 20.84						· .
1		19:44:49.6 19:45:05.6		21.51						
		19:46:09.6		21.85 22.86						
		19:46:25,6 19:46:41,6		23.19			$\sim 10$			•
		19:46:57.6		23.53 23.87		,	p.10			-
	•	19:47:13.6 19:47:29.6		24.20			•			
	-	19:47:45.6		$24.54 \\ 24.87$	C-	.1				
-,		10.40.01			<u>u</u> •	<u>+</u>				

Endeme 5 (8)

Chemical Analysis of the lower Venus atmosphere was performed at three altitudes by the Sounder Probe Gas Chromatograph (SPGC), initially called the Large Probe Gas Chromatograph (LGC). Carbon dioxide and seven neutral minor constituents were determined from individual and direct measurement of peak areas by computerized curve-fitting. The instrument design and functions, and the data routine and statistics, are described in IEEE Transactions on Geoscience and Remote Sensing, <u>GE-18</u> (No. 1), 85-93 (1980). The flight experiment is described in J. Geophysical Res., <u>85</u>, (Al3) 7891-902 (1980).

×L	B MODCOMP SOURCE EDITOR DATE 10/21/82 10:01:57 PAGE 1	FILE 1	SED-1
	1     LOWER ATMOSPHERIC STATE PROPERTIES     Utilitical     No. 018 P       2     FROM THE PIONEER VENUS SOUNDER PROBE     Utilitical     No. 018 P	······································	· · · · · · · · · · · · · · · · · · ·
+	5 4 5 BASED ON MERGED DATA FROM P A AND P B PRESSURE SENSORS, T 1 AND T 2 TEMPERATURE		
	6 SENSORS. 7	· · ·	· · · · · ·
	8 DATA ARE LISTED AT 4 SEC INTERVALS PRIOR TO TEMPERATURE SENSOR BREAKDOWN AT 9 13.1 Km/ Then, AT 32 SEC INTERVALS 18	<u></u>	n an
1	11 GO IS GROUND LEVEL ACCELERATION DUE TO GRAVITY, AT THE LANDING SITE		a an
	13 RO IS PLANETARY RADIUS AT THE LANDING SITE PLUS OR MINUS 0.25 KM 14		
	15 ALTITUDE IS ABOVE LANDING SITE 16	<u>i</u> ,	
	17 MW IS ATMOSPHERIC MEAN MOLECULAR WEIGHT (INPUT) 18 19 ZETA IS REAL GAS COMPRESSIBILITY FACTOR = P/(RHO X R T)	ин (р. 1996) Э	in the second
	20 21 ESTIMATED ABSOLUTE ACCURACIES: ON P, RH00.5% OF READING		and the second of
·	22 0N T	· · · · · · · · · · · · · · · · · · ·	H. Andrew
w.,	24 25 GRT (HR:MIN) IS CURRECT TO NEAREST .06 SEC. GRT (SEC) IS ROUNDED TO NEAREST SEC.	nen er en nen en	
	26 27 DESCENT VELOCITY RANGES FROM 39 TO 12 M/S ON PARACHUTE, 53 TO 11 M/S IN FREE		* • • • •
	28; FALL. 29 30 PARACHUTE JETTISON AT 45.4 KM, 19:06.3 GRT	···-···	- <u>'</u> ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
LI	31 IS		· · · · · · · · · · · · · · · · · · ·
		na an an an Arran an Arran	an a
		·····	ېېدې مېرېکې د دې د د
			ja se ta seconda de la composición de l
		-	
		· · · · · · · · · · · · · · · · · · ·	
		· · · ·	
		······	· · · ·

Ì

	*B MODC	OMP SOURCE ED	ITOR	DATE 08/21	/82 10:01:59	PAGE	1		<u>na kana kana kana kana kana kana</u> kana kana
									FILE 2
	1			LOWER ATMOS	HERE STATE PR	OPERTIES		anna a sha a ball a 1990 - 1991 - a dan a a a a a a a a baana bahaana ghanna	
	2	······			NEER VENUS SOU				
	3 4			A	SEIFF, P.I.				· .
	5					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	6	· · · · · · · · · · · · · · · · · · ·		$R\hat{u} = 6$	052.0 <u>Km</u> .8694 N/SEC2				
	8			. <u>MW</u> = 4	3.44 PH/SEU2				
	9	COT (HD - MIN)							· · · · · · · · · · · · · · · · · · ·
	10	GRT (HR:MIN)	GRI (SEC)	ALT (KM)	P (BARS)	T (DEG K)	RHO (KG/M3)	ŽE TA	
	12	18:49.646	67779	64.827	.9250E-01	246.3	-1964E+00	.9990	
	13	18:49.846 18:49.913	67791	64.336	.1013E+00	246.9	.2146E+00	.9990	
	15	18:49.938	<u>67795</u> 67799	<u>64-188</u> 64-034	.1041E+00 .1071E+00	246.9	-2207E+00 -2269E+00	<b>.9990</b>	· · · · · · · · · · · · · · · · · · ·
	16	18:50.046	67803	63.883	.1101E+00	247.2	.2330E+00	.9990	
	17	18:50.113 18:50.180	67807	63-732	-1132E+00	247-0	.2397E+00	.9990	
	<u>18</u> 19	18:50.246	67811 67815	63.581 63.433	.1164E+00 .1196E+00	247.6	.2458E+00 .2525E+00	<u>.9990</u> .9990	n na sana ana ana ang ang ang ang ang ang ang
	20	18:50.313	67819	63-289	-1228E+00	248 2	-2588E+00	-9990	
	21	18:50.380 18:50.446	67823	63-144	.1261E+00	248.9	-2650E+00	-9990	
	22	18:50.513	67827 67831	63.002 62.864	.1294E+00 .1327E+00	249.3 249.6	.2715E+00 .2789E+00	.9990 .9990	
	24	18:50.580	67835	62.729	.1360E+00	250.3	_2841E+00	.9990	
	25	18:50.646	67839	62.588	-1395E+00	251.2	.2904E+00	.9990	
	26	<u>18:50.713</u> 18:50.700	<u>67843</u> 67847	<u>62.451</u> 62.321	<u>-1430E+00</u> -1464E+00	252.2	.2966E+00	.9990	
	28	18:50.846	67851	62.189	-1499E+00	252.5	_3028E+00 _3093E+00	.9989 .9989	
	29	18:50.880	67853	62-122	-1517E+00	254.3	-3120E+00	.9989	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	18:50.946 18:51.013	67857 67861	61.995	.1552E+00	254.8	.3186E+00	_9989	
	32	18:51.080	67865	61.729	-1589E+00 -1627E+00	255.6 255.9	.3251E+00 .3325E+00	.9989 .9989	
	33	18:51.146	67869	61.603	-1664E+00	256.3	.3395E+00	.9989	· · · · · · · · · · · · · · · · · · ·
	34 35	18:51.213 18:51.200	<u>67873</u> 67877	61.479	.1701E+00	256.6	_3468E+00	_9989	
	36	18:51.346	67881	61-354 61-228	-1739E+00 -1778E+00	257.1 258.0	.35398+00 .36058+00	.9989 .9988	
· in	37	18:51.413	67885	61.102	-1818E+00	258.9	-3673E+00	.9988	
	<u>38</u> 39	<u>18:51.400</u> 18:51.546	<u>67889</u> 67893	60.984	1056E+00	259.8	.3737E+00	.9988	<u> Anna an ann an an an an an an an an an an</u>
	40	18:51.613	67897	60.868 60.754	.1894E+00 .1932E+00	26 <b>0.7</b> 261.6	-3800E+00 -3863E+00	-9988 -9988	
	41	18:51.680	67901	60.639	.1971E+00	262.5	.3928E+00	.9987	
	42	<u>18:51.746</u> 18:51.813	<u>67905</u> 67909	60.525	-2010E+06	263.6	.3989E+00	.9987	
	44	18:51.879	67913	60.411 60.301	-2050E+00 -2089E+00	264.7 265.6	_4051E+00 _4114E+00	.9987 .9987	
	45	18:51.946	67917	60.187	.2130E+00	266.8	.4177E+00	.9987	
	<u> </u>	18:52.013	67921	60.075	.2171E+00	267.5	_4247E+00	.9987	······································
	48	18:52.079 18:52.146	67925 67929	59.965 59.849	-2212E+00 -2256E+00	<b>268 - 4</b> 269 <b>- 1</b>	-4312E+00 -4386E+00	<b>.9986</b> .9986	
	49	18:52.213	67933	59.729	.2302E+00	269.9	.4463E+00	.9986	
	50	18:52.279	67937	59,614	.2347E+00	270.3	-4543E+00	.9986	
	51 52	18:52.346 18:52.413	67941 67945	59.506 59.403	.2390E+00 .2432E+00	270.8 271.3	.4618E+00 .4690E+00	-9986	
	53	15:52.479	67949	59.301	-2474E+00	271.5	.4767E+00	.9986	· · · · · · · · · · · · · · · · · · ·
	54	18:52.546	67953	59.200	-2516E+00	271.7	-4845E+00	.9986	
	55 56	18:52.613 18:52.679	67957 67961	59.094 58.988	.2561E+00 .26u7E+00	271.8	.4929E+00	<b>-9986</b>	
	57	18:52.746	67965	58.879	-2655E+00	272.0	-5014E+00 -5102E+00	<b>.9986</b> .9986	
	53	18:52.813	67969	58.785	.2697E+00	272.5	.5179E+00	0097	·

سسطين ومسطور الرابي الرابي الأرب الراب والمتقومة وووجو والمتعود والمربح والمروح والمروح والمراجع والمراجع والمراجع

***B MODCOMP SOURCE EDITOR** DATE 08/21/82 12:11:46 PAGE FILE 3 1 THE DATA FROM THE PIONEER VENUS LIR EXPERIMENT ARE GIVEN IN THREE FILES (1) THE PRE-ENTRY DATA; (2) THE DESCENT DATA AND (3) THE ON-BOARD 3 5 CALIBRATION DATA. 6 THE FILES ARE ARRANGED IN FIVE COLUMNS. FIRST IS THE GROUND RECEIVED TIME 8 (GRT) IN HOURS, MINUTES AND SECONDS. THIS CAN BE RELATED TO ALTITUDE, 10 11 PRESSURE, TEMPERATURE BY USE OF THE LAS FILE. THE UNITS FOR THE NEXT FOUR 12 13 14 FILES ARE WATTS PER SQUARE METER. THE SECOND COLUMNS LADELED "A", IS FOR 15 THE 3 TO 250 MICROMETER SPECTRAL BANDPASS. THE THIRD COLUMN, LABELED "B", 16 17 IS FOR THE 6 TO 7 MICROMETER SPECTRAL BANDPASS. THE FOURTH COLUMN, LABELED 18 19 "C"# IS, FOR: THE: 7 TO: 8 MICROMETER SPECTRAL BANDPASS. THE: FIFTH COLUMN. 20 LABELED "D", IS FOR THE 8 TO 9 MICROMETER SPECTRAL BANDPASS. 22 23 24 25 A FACTOR OF "PI", WHICH HAD BEEN INCORRECTLY APPLIED, HAS BEEN REMOVED FROM D. C. 26 W THESE DATA, AND THE DATA HAVE HAD INSTRUMENT ELECTRONIC OFFSET CORRECTIONS 28 APPLIED. 29 10 30 31 a 32 THE FIRST DATA RECEIVED AFTER AN INSTRUMENT CALIBRATION CYCLE IS DISTORTED 33 Ce) BY A "MEMORY" EFFECT AND SHOULD BE DISCARDED OR USED WITH EXTREME CAUTION. 34 35 THE EFFECT IS MOST EASILY SEEN IN FILE NUMBER ONE, THE PRE-ENTRY DATA, AT 36 9 37 5 THE FOLLOWING TIMES 18:35:53, 18:39:45, AND 18:42:17. 38 ē, 39 40 THE ON-BOARD CALIBRATION DATA, FILE NUMBER THREE, INDICATE AN INCREASING 41 42 43 SIGNAL DURING THE DESCENT PHASE OF THE MISSION. THIS WAS DUE TO INCREASING 44 PROBE BUS-VOLTAGE; THE CALIBRATION SYSTEM WAS NOT ON REGULATED POWER. THIS 45 46 TYPE OF CHANGE WAS OBSERVED DURING CALIBRATION OF THE INSTRUMENT. THE LAST 47 48 CALIBRATION CYCLE ENDED 2 MINUTES, 18 SECONDS PRIOR TO IMPACT ON VENUS" 49 50 SURFACE. -51 52 LIS 1

والمراجع والمتحد والمتحد فأنعد والمتعور والمتحد والمحتج والمحت

na da anticipa de la companya de la companya 👬

"最快能在我们的时候,我们们就是一次的"我们"的"我们",我们们们的"我们",我们们们也不能不能。

*8 M	ODCOMP SOURCE I	EDITOR DA	TE 08/21/82	12:12:01	PAGE 1	Fuell	
·····	<u> </u>		•		· · · · · · · · · · · · · · · · · · ·	FILE 4	
			· · · · · · · · · · · · · · · · · · ·	•		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1 2	FILE	NUMBER THREE			-11-05 M	
	3	LIR O	N-BOARD CALIB	RATION DATA		78-0510 05A	•
	<u>4</u>		8	C		• •	
	6				The second se		
en en en el el	/ 8 18:35:35	2432.9	247.6	173.4	133.6		
	9 18:35:41	2048.9	209.5	175.7	136.5		
1		2592.2	278-6	228.5	172.7		
1	2 18:38:53	2767.2	276.6	226.2	168.3		· · ·
1		2672-1	292.3	236.5	· · · · · ·		
1		2656.1	282.5	234.2	177.0		
1							
18		1761.3 1761.3	172-1 174-1	147.8	114-8		
19	9	101.0	1/7 • 1	170.6	116.3		
21	0 18:55:33	2048.9	207.6	174.6	133.6		
2:		2032.9	211-5	173.4	132.2		
2.	3 18:58:45	2896.8	213.5	179.2	136.5		
24		2064.9	215.5	179.2	136.5	•	
21		2080.9	,211.5	181.5	138.0		
27	7 19:02:03	2064.9	213.5	178.0	136.5		
28		2480.9	A40 A	. 79 .	······		
3(		2064.9	219.4 217.4	178.0 178.0	136.5 135.1		
31	1		······································		The second s		
33		2080.9	225.3	180.3 179.2	135.1		· · · · ·
34	4	2004.7	<b>611</b> +0	117.2	130.0		
35	5 19:11:33	2096.8	219.4	182.6	138.0		n na tana ay
36		2096.8	225.3	184.9	139.4		
38	8 19:14:45	2160.7	235.2	191.8	145.2		
35		2144.8	233.2	188.3	142.3	· · · · · · · · · · · · · · · · · · ·	······································
41		2224.7	239.1	202.1	152.4		
42	2 19:01:23	2224.7	247.0	197.5	146.6		
43		0700 E	~~~ 8				- ··· · · · · · · · · · · · · · · · · ·
45		2320.5	262.8	211.3	153.8		· · · · · · · · · · · · · · · · · · ·
46	6						
47	7 19:24:21	2384.5	274-6	218.2	164-0		
40	8 19:24:27 9	2384.5	272.6	219.3	161.1		
5 (	0 19:27:33	2464.4	284.5	227.3	162-5		
51 52		2464.4	284.5	227.3	165.4		
	2 3 19:30:45	2560.2	294.3	235.4	169.8	· · · · · · · · · · · · · · · · · · ·	
54	4 19:30:51	2560-2	294 - 3	241.1	169.8		
55	5 6 19:33:57	0/08 A					
51		2608.2	308.1	243-4	174-1 168-3	· · · · · · · · · · · · · · · · · · ·	Anna an Anna Anna Anna Anna Anna Anna A
58					10010		

#### PIONEER-VENUS DAY PROBE NEPHELOMETER (SN) EXPERIMENT

#### 1.0 BACKSCATTER CHANNEL

#### 1.1 ANGULAR WEIGHTING (DAY PROBE) FUNCTION, F(THETA), FOR BACKSCATTER CHANNEL NORMALIZED SO THAT

	INTI	EGRAL EF(THETA)D THETA! = 1
	ANGLE	F (THETA)
A	(DEG)	
	180.0	0.
	179.0	0.011
	178.0	0.022
	177.0	0.035
	176.0	0.057
	175.0	0.087
	174.0	0.116
	173.5	0.127
	173.0	0.135
	172.5	0.138
	172.0	0.137
	171.5	0.133
	171.0	0.125
	170.0	0.101
	169.0	0.069
	168.0	0.042
	167.0	0.024
	166.0	0.012
	165.0	0.007
	164.0	0.005
	163.0	0.004
	162.0	0.003(5)
	161.0	0.003
	160.0	0.002
	159.0	0.001
	158.0	0.001
	157.0	0.000

∣⊃

	FILE 27,
Contraction of the second seco	· · · · · · · · · · · · · · · · · · ·
5 E. J. 3. E. L.	· · · · · · · · · · · · · · · · · · ·
J.	

.

# File 27 p.2 1.2 BACKSCATTER CHANNEL DATA (DAY PROBE) NOTE: PLEASE SEE DATA OF ATMOSPHERIC STRUCTURE EXPERIMENT (SAS) TO OBTAIN ALTITUDE VS. TIME PROFILES ----

Ξ.

1 4

E.

1				
GMT (HR:MIN:SEC)	BACKSCATTER (1/M~STER)		$\int a \sqrt{7}$	>
(IR.HIN.SEC)	(I/M-SIER)		File 27	p.3
18:54:42.8	1.268-02			J
18:54:46.8	1.26E-02			
BLACK		 · · · · · · · · · · · · · · · · · · ·		
18:56:10.8	1-26E-02			
<u>18:56:11.8</u> 18:56:12.8	1.19E-02 1.26E-02			
WINDOW CO	VER OPEN			
18:56:14.8	4.90E-05			
18:56:15-8	4.90E-05			
18:56:16.8	3.85E-05			
<u>18:56:17.8</u> 18:56:18.8	<u>4.55E-05</u> 4.55E-05			
18:56:19.8	4.55E-05			
18:56:20.8	4.90E-05			
18:56:22.8	4.55E-05			
18:56:24.8	4-20E-05			
<u>18:56:25.8</u> 18:56:26.8	4.90E-05 4.55E-05			
18:56:27.8	4.90E-05			
18:56:28.8	4.20E-05			
18:56:30.8	4.55E-05			
18:56:31.8 18:56:32.8	5.25E+05 5.60E-05			
18:56:33.8	4.906-05		···· •	
18:56:34.8	4.900-05			
18:56:35.8	5.60E-05			
18:56:36.8	4.55E-05		·	
18:56:38.8 18:56:40.8	4.55E-05 4.55E-05			
18:56:41.8	4.906-05			
18:56:42.8	5.25E-05			
18:56:43.8	6.65E-05			
18:56:48.8 18:56:49.8	7.35E-05 8.40E-05		the second s	
18:56:50.8	9.102-05			
18:56:51.8	9.10E-05			
18:56:52.8	9.80E-05			
18:56:54.8 18:56:56.8	7.70E-05 7.70E-05		·····	
18:56:57.8	8.05E-05	 ·	·	
18:56:58.8	8.75E-05			
18:56:59.8	9.10E-05			
18:57: .8	8.755-05			
18:57: 2.8 18:57: 3.8	9.45E-05 9.80E-05			
18:57: 4.8	9.456-05	·	· · · · · · · · · · · · · · · · · · ·	
18:57: 5.8	9.10E-05			
18:57: 6.8	9 -8 0E-05		· · · · · · · · · · · · · · · · · · ·	
18:57: 7.8	9-455-05			
18:57: 8.8 18:57:10.8	9.45E-05 8.75E-05			
18:57:12.8	8.75E+05			
	8.40E+05			
18:57:14.8	8.405-05			
18:57:15.8 18:57:16.8	8.405			
18:57:18.8	8.75E-05 8.75E-05			
18:57:19.8	8.40E-05	·		
18:57:20.8	7.35E-05			
18:57:21.8	7 355-05			
10:0/:21.0	7.35E-05			

	CKGROUND RADIATION CHANNELS	• • • • • • • • • • • • •		$\int \cdot \cdot$
	(DAY PROBE)			File 27 p
2.1 SPECTRAL FU				,
2.1.1 DEFINITION				
	GRAL ER(LAMBDA)I(LAMBDA)D L	AMBDA!		
WHERE				
E(UUI) = NEPH	ELOMETER READING IN "H" UNI	IS ALCOONATT (NETED OOL		
$\frac{R(LAMODA) - S}{T(LAMODA) = S}$	PECTRAL FUNCTION IN "H" UNI Pecific intensity of Ambien	IS/MICROWAFF/METER SGL	ARED-STERADIA	
	N MICROWATTS/METER SQUARED-		, A	¥ ;
	LENGTH IN NANOMETERS	STEADIAN MANUNE FER	ARED-STERADIA	
	OF R VERSUS LAMBDA FOR UV	(BG1)	ž.	
CHANNEL AND	VISIBLE (BG2) CHANNEL		ê m	
2.2.1 UV (BG1)			がれ	
LAMBDA	R		N 9 1	3 2
(NANOMETERS)	(H UNITS/MICROWATT-METER	SQUARED-STERADIAN)	-	5 5 6
320	0_7E-04		" K	Amile BKgr. SR. Bmb. BKgr. rad.
325	1.8E-04		۲ <i>.</i>	Charles 1
330	4.16-04		A.	90 96 C
335 340	8.0E-04			Arr, & 1 A 73 G.
345	12-2E-04 16-3E-04			
350	20.1E-04			
355	23.66-04			(SN) SEA
360	24.8E-04			
365	25.1E-04			(Sh)
370	24.6E-04			
375	20.6E-04			
380	12.4E-04			
385	5-5E-04			
390	0.0E-04			
68 0	0.0E-04			
700	0.66-04			
710	1.55-04			
720	2.8E-04			
730	5.0E-04			
740	7.6E-04			
750	7.6E-04			
760	3.5E-04			
770	1_8E-04			
780	0.6E-04		· · · · · · · · ·	
790 800	0-3E-04			
850	0.2E-04			
900	1.66-04			
950	1.96-04			······
1000	1.66-04			
1050	1.1E-04			·
1100	0.8E-04			
1150	0.2E-04			

 $\overline{\mathbf{z}}$ 

. . . . .

*B	MODCOMP	SOURCE	EDITOR	

5

*B MODCOMP SOURCE EDITOR	DATE 08/23/82	17:18:00 PAGE	1	FILE 28 SED	
					ay
1 PI	ONEER VENUS SOUNDER	PROBE GAS CHROMATOGRA	A P H		
3	VENUS LOWER ATMOS	PHERE COMPOSITION			
5				··· · · · · · · · · · · · · · · · · ·	
···· 6 · · · · · · · · · · · · · · · ·	-			LGC	
8 SAMPLE NO.	<u> </u>		3		
10 11 GRT				18-0780-04A	
11 GRT 12	18:58:09	19:07:39	19:18:09	78-0	
13 14					
15 ALTITUDE*, KM 16	51.6	41.7	21.6		
17					
18 19 PRESSURE, BARS	+-0.140	+-0.17 2.91	+-0.2		
20 21	+-0.017	+-0-02	+-0-02		
22					
24					
25 26	+-3	SIGMA CONFIDENCE INT	ERVAL		
25 26 27 GASES DETECTED	CONCENTRATION	SIGMA CONFIDENCE INT			
25 26 27 GASES DETECTED 28 29	CONCENTRATION	SIGMA CONFIDENCE <u>IN 1</u> SIGMA CONFIDENCE IN T			
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION				
25 26 27 GASES DETECTED 28 29 30	CONCENTRATION				
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION				
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1	SIGMA CONFIDENCE INT z +-5.8	+-1.0		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1	SIGMA CONFIDENCE INT			
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1	SIGMA CONFIDENCE INT z +-5.8 95.9	+-1.0 96.4		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1	x x y y y y y y y y y y y y y	+-1.0 96.4 +-0.01		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 	X x y y y y x y y y y y y y y y y y y y	+-1.0 96.4 +-0.1		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 	X SIGMA CONFIDENCE INT X 95.9 +-5.8 95.9 +-0.7 +-0.04 3.54 +-0.04  +-0.05	$ \begin{array}{c} +-1.0\\ 96.4\\ +-0.01\\ 3.41\\ +-0.002\\ \end{array} $		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 	x +-5.8 95.9 +-0.7 x +-0.04 x +-0.005 +-0.068 0.519	+-1.0 96.4 +-0.01 3.41 +-0.002 +-6.015		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 +-1 95.4 +-20.1  +- 2.5 +- 0.14 +-0.02	x +-5.8 95.9 +-0.04 3.54 +-0.04 +-0.05 +-0.068	$ \begin{array}{c} +-1.0\\ 96.4\\ +-0.01\\ 3.41\\ +-0.002\\ \end{array} $		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 +-1 95.4 +-20.1  +- 2.5 +- 0.14 +-0.02	x +-5.8 95.9 +-0.7 x +-0.04 x +-0.005 +-0.068 0.519	$   \begin{array}{r} +-1.0 \\ +-0.01 \\ 3.41 \\ +-0.002 \\ +-0.002 \\ +-0.015 \\ 0.135 \\ \end{array} $		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 +-1 95.4 +-20.1  +- 2.5 +- 0.14 +-0.02	x +-5.8 95.9 +-0.7 x +-0.04 x +-0.005 +-0.068 0.519	$ \begin{array}{r} +-1.0 \\ 96.4 \\ \\ +-0.01 \\ 3.41 \\ +-0.002 \\ 0.135 \\ \\ +-0.002 \\ \end{array} $		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 +-1 95.4 +-20.1  +- 2.5 +- 0.14 +-0.02	X 95.9 +-5.8 95.9 +-0.04 3.54 +-0.04  +-0.05 +-0.005 +-0.008	$ \begin{array}{r} +-1.0 \\ 96.4 \\ \\ +-0.01 \\ 3.41 \\ +-0.002 \\ 0.135 \\ \\ +-0.002 \\ \end{array} $		
25 26 27 GASES DETECTED 28 29 30 	CONCENTRATION +-1 +-1 95.4 +-20.1  +- 2.5 +- 0.14 +-0.02	X 95.9 +-5.8 95.9 +-0.04 3.54 +-0.04  +-0.05 +-0.005 +-0.008	$ \begin{array}{r} +-1.0 \\ 96.4 \\ \\ +-0.01 \\ 3.41 \\ +-0.002 \\ 0.135 \\ \\ +-0.002 \\ \end{array} $		

*B MODCOMP SOURCE EDITOR

 $\leq$ 

1 22

<u>^</u>	
	^
<b>Ⅰ</b> −− − 0	~ !!
	പറ
1/000	$\sim 0$

5.9

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c} 63 \\ 64 \\ 65 \\ \hline 66 \\ \hline 66 \\ \hline 67 \\ CARBON MONOXIDE \\ 32.2 \\ \hline 32.2 \\ \hline 30.2 \\ \hline 30.2 \\ \hline 19.9 \\ \hline -1.6 \\ \hline +0.3 \\ \hline +-0.3 \\ \hline +-$	-
64 65 66 +61.7-22.2 +-18.0 +-3.1 67 CARBON MONOXIDE 32.2 30.2 19.9	
66         +61.7-22.2         +-18.0         +-3.1           67         CARBON MONOXIDE         32.2          30.2	
67 CARBON MONOXIDE 32.2 30.2 19.9	
69	
7 0	
72 NEON <8 10.6 A 31	
73 +-3.7	
/4	
75 76 +2000-0 +750-155	
73 644 546 730 135	
78	
<u>79</u> +29 <u>6-0</u> +-43.1	
8 с	
81 UPPER LIMITS FCR	
82 UNDETECTED GASES 1 2 3	
83	
84 85	
86	
87 HYDROGEN <200 <70 <10	•
89 METHANE < 1C < 3 < 0.6	
90	
91 KRYPTON < 40 < 10 < 2	
92	
93 ETHYLENE < 2C < 7 < 1	
95 ETHANE < 20 < 7 < 1 96	
97 HYDROGEN SULFIDE < 4C < 1C < 2	
98	
99 CARBONYL SULFIDE < 40 < 10 < 2	
100	
101 PROPANE < 9C < 30 < 5	
103 NITROUS OXIDE** <200 < 70 < 10	
105	
106 *INTERPOLATED FROM THE SOUNDER PROBE ATMOSPHERE STRUCTURE DATA (SEIFF, ET AL.).	
107	
108 **OPTIMUM CASE, MAY BE CONSIDERABLY HIGHER UNDER SOME CTRCUMSTANCES	
LIS	

*E MOLCOMP SOURCE EDITOR	DATE 11/08/83 1	1:32:03	PAGE 1			•	SED-C	202	le 1
) 1 ******* ******* *** 2 BULLETIN SASIN2 CREA 3 *******		**** ******* 02 BY ARCALL **** *******						Fl	
4 * 5 ATMOSPHERE STRUCTURE 6 PROBES (SMALL PROBES 7 NOW ENTERED IN THE S 8 PRCBE DATA.	E 2 AND 3) IN THE ALT SED FILE, AS OF 6/12/	ITUDE RANGE FRC	M 137 KM TO 7	O KM ARE				(File	56)
۰ ،								•	
					,		,		
na sa									
· · · · · · · · · · · · · · · · · · ·									
)									
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• •					
		· · · · · · · · · · · · · · · · · · ·	. <u></u>				. · ·		
		· · · · · · · · · · · · · · · · · · ·	<b>.</b>					·	
						•			
na se a la construcción de la const									

÷

.

MOD	DCOMP SOURCE EDITOR DATE 11/08/83 11:32:03 PAGE 1		4705-002 File 2
1	ATMOSPHERE STRUCTURE EXPERIMENT (LAS, SAS)		
2 3 4	ALVIN SEIFF, PRINCIPAL INVESTIGATOR		(File 3
5 6 7	DATA DERIVED FROM DECELERATIONS DURING ENTRY OF THE FOUR FIGNEER VENUS PROBES INTO THE ATMOSPHERE OF VENUS.		
8	1. LISTED POINTS CORRESPOND TO ACCELEROMETER SAMPLING TIMES.		•
10	2. ALL ALTITUDES ARE MEASURED RELATIVE TO THE 6052.0 KM RADIUS.		
17 18	3. ATMOSPHERIC STATE PROPERTIES ARE GIVEN IN THE LAST THREE COLUMNS. DENSITY IS DERIVED FROM DECELERATION MEASUREMENTS; FRESSURE, FROM INTEGRATION OF MEASURED DENSITIES IN THE EQUATION OF HYDROSTATIC EQUILIBRIUM; AND TEMPERATURE FROM THE EQUATION OF STATE. SELECTED MEAN MOLECULAR WEIGHTS VARY WITH ALTITUDE, AND WERE DERIVED FROM ONMS AND BNMS DATA (SEIFF AND KIRK, 1981).		
19 20 21 22 23 24 25 26 27	4. PROBE TRAJECTORY VARIABLES ARE GIVEN IN COLUMNS 3, 4, AND 5. PROBE VELCCITY, PATH ANGLE BELOW HORIZONTAL (GAM, DEG), AND ALTITUDE WERE CALCULATED FROM THE EQUATIONS OF MOTION AND THE MEASURED DECELERATIONS, STARTING FROM THE INITIAL VELOCITY AND PATH ANGLE AT ENTRY DETERMINED BY RADIO TRACKING PRIOR TO PROBE ENTRY. ALTITUDE AND VELOCITY AT MODE CHANGE FROM ENTRY TO DESCENT WERE CONSTRAINED TO MATCH ALTITUDE AND VELOCITY DERIVEC FROM DESCENT MODE DATA. SMALL ADJUSTMENTS WERE MADE TO (A) THE TIME OF ENTRY AND (B) THE ACCELEROMETER SCALE-FACTOR RATIO ON THE 600G RANGE TO ACHIEVE		
28 25	THIS MATCH.		· .
<u>30</u> 31		÷	
<u>32</u> 33			
34 35	e en anno en la companya de la compa		
<u>36</u> 37		×-	
<u>38</u> 39			
40			
41 42			
43 44		ананананананананананананананананананан	
45 46			• •
47			
48 49	STATE PROPERTIES OF THE MIDDLE ATMOSPHERE OF VENUS		
50 51	PIONEER VENUS NIGHT PROBE		
52 53	THE ALTITUDE REFERENCE IS THE SCUNDER PROBE LANCING SITE AT 6052.C KM.		
54 55	WHERE $G = 8.8654$ M/SEC**2		
56	GRT(HR MIN) GRT(SEC) ALT(KM) V(KM/S) GAM(DEG) RFO(KG/M3) P(ME) T(DEGK)		
57			

*B	MODCO	MP	SOURCE EI	DITOR	DATE 11	/08/83 11	1:32:03	PAGE	2	
	59 .	18	59.458	68367.48	137.1	11.583	-41.10	.688E-05	.246E-06	151.2
<u>}</u>	60	18	59.462	68367,73	135.2	11.585	-41.05	•127E-08	.399E-06	144.0
	61	18	59.466	68367.98	133.3	11.586	-41.07	•232E-08	•683E-06	138.9
	62	18	59.471	68368.23	131.4	11.587	-41.06	•379E-08	•116E-05	147.2
	63		59.475	68368.48	129.5	11.589	-41.05	•741E-08	•204E-05	135.2
	64		59.479	68368.73	127.6	11.590	-41.04	•134E-07	•366E-05	135.9
	65		59.483	68368.98	125.7	11.592	-41.02	-273E-07	•683E-05	126.1
· <u> </u>	66		59.487	68369.23	123.8	11.593	-41.01	•535E-07	•131E-04	124.1
	67		59.491	68369.48	121.9	11.594	-41.00	•113E-06	•260E-04	117.1
	68		59.496	68369.73	. 120.0	11.596	-40.99	•231E-06	•529E-04	117.5
	69		59.500*	68369.98	118.1	11.597	-40.97	•447E-06	•106E-03	122.0
	<u>70</u> 71		59.504*	68370.23	116.2	11.598	-40.96	•827E-06	•207E-03	128.6
	72		59.508 59.512	68370.48 68370.73	114.3 112.4	11.600 11.601	-40.95 -40.94	.150E-05 .263E-05	•390E-03 •718E-03	134.2 140.9
	73		59.512	68370.98	110.5	11.602	-40.93	•442E-05	•128E-02	140.5
	74		59.521	68371.23	108.6	11.603	-40.91	•809E-05	•128E-02	145.4
	75		59.525	68371.48	106.7	11.603	-40.90	-130E-04	•395E-02	157.3
	76		59.529	68371.73	104.8	11.603	-40.89	•213E-04	.669E-02	162.9
	77		59.533	68371.98	102.9	11.602	-40.88	•351E-04	.112E-01	165.6
	78	18	59.537*	68372.23	101.0	11.599	-40.86	•569E-04	.185E-01	169.1
	79.	18	59.541	68372.48	99.1	11.594	-40.85	.101E-03	•310E+01	160.2
	80	18	59.546	68372.73	97.2	11.583	-40.84	.176E-03	.531E-01	156.9
	81	18	59.550	68372.98	95.3	11.565	-40-83	•278E-03	•853E-01	167.2
	82		59.554	68373.23	93.4	11.535	-40.81	•467E-03	•148E+00	165.5
	83		59.558	68373.48	91.6	11.481	-40.80	•841E-03	•252E+00	156.3
	84		59.562	68373.73	89.7	11.390	-40.75	■134E-02	•423E+0C	165.3
)	85		59.566	68373.98	87.9	11.247	-40.78	•215E-02	•697E+00	169.3
the second se	86		59.571	68374-23	86.0	11.030	-40.77	•324E-02	•112E+01	180.0
	87 88		59.575	68374.48	84.3	10.730	-40-76	-459E-02	•171E+01	194.4
	ee 89		59.579* 59.583*	<u>68374.73</u> 68374.98	<u>82.5</u> 80.9	10.325 9.796	-40.75	-664E-02 -937E-02	•253E+01	199.3
	90		59.587*	68375+23	·, 79.3	9.143	-40.73	•129E-01	•366E+01 •513E+01	204.2
	51		59.551*	68375.48	77.5	8.385	-40.73	•173E-01	•698E+01	211.5
	92		59.596*	68375.73	76.6	7.544	-40.72	.231E-01	•923E+01	208.7
	93		59.600*	68375.98	75.5	6.665	-40.72	•298E-01	.119E+02	208.5
	94	18	59.604*	68376.23	74.4	5.815	-40.73	•365E-C1	.148E+02	211.5
	95	18	59.608*	68376.48	73.6	15.037	-40.74	•435E-01	+178E+02	214.4
	96	18	59.612×	68376.73	72.8	4.357	-40.75	.496E-01	.209E+02	220.3
	97	18	59.616	68376.98	72.1	3.787	-40.76	•545E-01	•239E+02	229.3
	98.	18	59.621	68377.23	71.5	305.5	-40.78	.601E-01	•268E+02	232.9
	59		.*							
and the second s	00		*	INTERFCLAT	ED ACCELI	ERATION CA	TA			
	01									
	02									
	03 04									
	05									
	06									
	07			· · · · · · · · · · · · · · · · · · ·						
-	08									
_	09				···· · · · · · · · · ·					
	10									
	11									
ſ	12									
1	13									
	14									
1	15									
-	16									

(Fil 57) p.2

~<u>,</u>