NASA - National Aeronautics and Space Administration
Instrument Information


INSTRUMENT_TYPE "RADIO SCIENCE"


INSTRUMENT_DESC


Instrument Overview
===================
The Radio Science investigations on Cassini were unique in that
they utilized instrumentation with elements both on the spacecraft
and on the ground. The spacecraft element was further
distinguished in being distributed among several subsystems on the
Cassini Orbiter. Cassini Radio Science can be regarded as a
solar-system-sized instrument observing at microwave frequencies,
with one end of the radio path on the spacecraft and the other
end at the NASA Deep Space Network (DSN) stations on the ground.

The Radio Science 'instrument' operated in two fundamental modes,
depending on whether the microwave optical path had one or two
legs. For 'two-way' measurements, the 'uplink' signal from the
ground could be a single carrier at either X-band (7.2 GHz) or
Ka-band (34 GHz); or both carriers could be transmitted at the
same time. The spacecraft radio equipment then acted as a
repeater, collecting the carrier signal with the spacecraft High
Gain Antenna (HGA), transforming it to one or more 'downlink'
frequencies (2.3 GHz, 8.4 GHz, or 32 GHz), amplifying and
re-collimating it, and sending it back to Earth. The returned
signal was detected using DSN ground receiving equipment,
amplified and downconverted, and recorded for later analysis.

Uplink signals were generated by the DSN exciter, using the local
frequency and timing system as a reference. At Launch and Cruise,
this reference was a Hydrogen Maser. Note: in the future, these
masers could be combined with a Compensated Sapphire Oscillator
(CSO) to meet Radio Science requirements for increased stability.
The uplink signals were amplified, radiated through feed horns,
and collimated by a large parabolic ground antenna, which
was continuously aimed at the Cassini spacecraft. The actual
transmission frequencies could be adjusted to allow the spacecraft
receivers to lock to the uplink signals and to compensate, in
finite steps, for the main part of the Doppler effect between
the Earth and the Cassini Orbiter.

For one-way measurements, the signal source was on board the
Cassini Orbiter. The output from an extremely stable on-board
reference oscillator (the Ultrastable Oscillator, or USO) was
transformed to downlinks at S-band (2.3 GHz), X-band (8.4 GHz),
or Ka-band (32 GHz) by elements in the Radio Frequency Subsystem
(RFS) and Radio Frequency Instrument Subsystem (RFIS). These
signals were amplified and radiated through the HGA toward Earth.
After passing through the medium of interest (plasma, rings, a
neutral atmosphere, or gravitationally curved space), the
perturbed signal was collected by a DSN antenna, amplified and
downconverted, and recorded for later analysis.

The spacecraft part of the Cassini Radio Science instrument is
described immediately below; that is followed by a description
of the DSN (ground) part of the instrument.


Instrument Overview - Spacecraft
================================
On the Cassini Orbiter, the Radio Science instrument was
encompassed in the Radio Science Subsystem (RSS). RSS was really
a virtual subsystem comprising elements from three physical
spacecraft subsystems, two of which had other functions to
perform. The subsystems that participated in RSS were the
RFIS, the RFS, and the Antenna Subsystem. Specifications
included:


Instrument Id : RSS
Instrument Host Id : CAS
Pi Pds User Id : UNK
Instrument Name : RADIO SCIENCE SUBSYSTEM
Instrument Type : RADIO SCIENCE
Build Date : UNK
Instrument Mass : UNK
Instrument Length : UNK
Instrument Width : UNK
Instrument Height : UNK
Instrument Manufacturer Name : UNK


----- F2 -------- F2 -----
| |<----------------------------------|
| | ---------------- | X-BAND | | LGA1|
| | F3 | X-BAND | X-BAND| F3 |DIPLEXER| F3 | LGA2|
| |--------->| HYBRID | TWTA |------>| |--------->| |
| | ---------------- -------- -----
| | F4 ---------------- F5 ------ F5 ----- F5 -----
| |--------->| | |--->| Ka- |--->| |--->| |
| | | | | | BAND | | BPF | | |
| |--------->| Ka- | Ka- |--->| TWTA |--->| |--->| |
| DST | F3 | BAND | BAND | F7 ------ F7 ----- F7 | |
| | |EXCITER| HYBRID | | |
| | | | | F7 ---------- F8 | HGA |
| | | | |<----| Ka-BAND |<---------| |
| | ---------------- |TRANSLATOR| | |
| | F4 ------------- ---------- F6 | |
| |-------------->| S-BAND |-------------
| | | TRANSMITTER | | |
| | ----- ------------- -----
| | | USO |
----- -----
(a)



----- -------- -----
| | | | | HGA |
| | ---------------- | X-BAND | | LGA1|
| | F3 | X-BAND | X-BAND| F3 |DIPLEXER| F3 | LGA2|
| |--------->| HYBRID | TWTA |------>| |--------->| |
| | ---------------- -------- -----
| | F4 ---------------- F5 ------ F5 ----- F5 -----
| |--------->| | |--->| Ka- |--->| |--->| |
| | | | | | BAND | | BPF | | |
| |--------->| Ka- | Ka- | | TWTA | | | | |
| DST | F3 | BAND | BAND | ------ ----- | |
| | |EXCITER| HYBRID | | |
| | | | | ---------- | HGA |
| | | | | | Ka-BAND | | |
| | ---------------- |TRANSLATOR| | |
| | F4 ------------- ---------- F6 | |
| |-------------->| S-BAND |-------------
| | | TRANSMITTER | | |
| | F4 ----- ------------- -----
| |<----| USO |
----- -----
(b)


Fig. 1: Configuration of the Cassini Orbiter Radio Science Subsystem
for (a) two-way operation and (b) one-way operation. The RFS comprised
the USO, DST, X-Band TWTA, and X-Band Diplexer. The RFIS comprised the
Ka-Band Exciter, Hybrid, Ka-Band TWTA, BPF (Band Pass Filter), Ka-Band
Translator, and S-Band Transmitter. The Antenna comprised the HGA,
LGA1, and LGA2. In (a) F1 is the DST receiver channel frequency and Fk
is the KAT VCO frequency; in (b) F1 is the DST exciter channel
frequency. Then the other frequencies are as follows:

F2 = 749*F1 (~7.2 GHz; X-band up)
F3 = 880*F1 (~8.4 GHz; X-band down)
F4 = 12*F1 (~115 MHz; internal reference)
F5 = 3344*F1 (~32 GHz; Ka-band down)
F6 = 240*F1 (~2.3 GHz; S-band down)
F7 = 294*Fk (~32 GHz; Ka-band down)
F8 = 315*Fk (~34 GHz; Ka-band up)


Radio Frequency Subsystem