Disclaimer: This webpage is to assist you on getting started with relevant literature and science data for the topic of your interest. The products located on this website are subject to change or become outdated over time. Thus, it is meant only to be a starting point for you to begin your journey to Saturn.
Saturn’s atmospheric structure inferred from Cassini’s Attitude Control Flight Data: Andrade, L.G., 2018. Skimming through Saturn's Atmosphere: The Climax of the Cassini Grand Finale Mission. 2018 AIAA Guidance, Navigation, and Control Conference, 8–12 January 2018, Kissimmee, Florida.
https://doi.org/10.2514/6.2018-2111.
Saturn’s atmospheric structure inferred from Cassini’s Doppler radio data:Boone, D.R., M. Wong, J. Bellerose, and D. Roth, 2018. Preliminary Saturn Atmospheric Density Results From Cassini's Final Plunge. AAS 18-115 in "Advances In The Astronautical Sciences, Guidance, Navigation and Control 2018”. Feb. 1-7, 2018, Breckenridge, CO.. Pub. 2018, 1362pgs. Ed. Cheryl A. H. Walker.
Included below are data resources that span the entire mission. These may help understand all of the sub-topics below.
This table outlines each Saturn observation segment by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Table of Time Periods with Saturn-Focused Observations
Segment Times, Movies, Legacy Packages and Visualizations
Saturn Formation and Evolution
This section is associated with the objective to provide observational constraints on the formation and the evolution of Saturn. Cassini obtained measurements relevant to (1) the abundances of helium and volatiles such as ammonia and phosphine, (2) the D/H ratio from CH3D/CH4 measurements, and (3) the structure of the interior and core from gravity and magnetic field place constraints on how Saturn formed and evolved. Key instruments involved are CIRS, VIMS, MAG, and RSS. Science Objectives included:
- Provide observational constraints (gas composition, isotope ratios, heat flux, ...) on scenarios for the formation and the evolution of Saturn.
Key Review Publications
In
Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Origin of the Saturn System. pp. 55-74. Johnson, T. V. and Estrada, P. R.
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press (2018)
- The Origin and Evolution of Saturn, with Exoplanet Perspective. Atreya, S. K., Crida, A., Guillot, T., Lunine, J. I., Madhusudhan, N., and Mousis, O.
Reference Data
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn Formation by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as
[XLSX] or
[CSV]
Table of Time Periods with Formation and Evolution Observations
Segment Times, Movies, Legacy Packages and Visualizations
Interior Fundamentals
Sub-Topics:
Gravity and Other Fundamental Parameters
Shape of Saturn
Rotation Rate
This section pertains to the current knowledge, circa Summer 2018, of properties associated with Saturn's interior structure and rotation rate of the deep atmosphere. These include the values of gravitational moments through J10 and higher, the present shape of Saturn as expressed by Legendre polynomial coefficients for the 1-bar level, the magnetic field structure, and current estimates of the rotational period as derived from analysis of kronoseismological signals observed in the rings and other techniques. Science Objectives include:
- Infer the internal structure and rotation of the deep atmosphere.
- Determine Saturn's rotation rate and internal structure despite the planet's unexpected high degree of axis symmetry.
OVERVIEW
Key Review Publications
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- The interior of Saturn. pp. 75 - 81. Hubbard, W. B., Dougherty, M. K., Gautier, D., and Jacobson, R.
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. (2018)
- The interior of Saturn. Fortney, J. J., Helled, R., Nettelmann, N., Stevenson, D. J., Marley, M. S., Hubbard, W. B., and Iess, L.
Reference Data
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn Interior by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as
[XLSX] or
[CSV]
Table of Time Periods with Interior Observations
Segment Times, Movies, Legacy Packages and Visualizations
Gravity and Other Fundamental Parameters
Data and higher order products related to Saturn's
gravitational field, and internal structure can be found here. The key instrument
contributing to this subject is
RSS.
The following papers and tables contain data useful for modeling of Saturn's gravity.
Iess, L., et al. Measurement and implications of Saturn’s gravity field and ring mass. Science, 10.1126/Science.aat2965 (2019). [DOI: 10.1126/science.aat2965] Tables
might be a paper
mass
gravity moments
rotation rate
equatorial radius
polar radius
Table 1 Measured gravity harmonic coefficients of Saturn (un-normalized; reference radius 60330 km) and total ring mass (in units of Mimas’ mass) [PDF].
The J
2 value includes a constant tidal term owing to the average tidal perturbation from the satellites. The associated uncertainties are recommended values to be used for analysis and interpretation. For the zonal harmonics they correspond to 3 times the formal uncertainties. The solution for the total ring mass (A+B+C) is stable independently of the adopted dynamical model (table S2) and the uncertainty reported is the 1σ formal uncertainty. See table S2 for our total ring mass estimates for several models of the unknown accelerations
| Value | Uncertainty |
J2 (x106) | 16290.573 | 0.028 |
J3 (x106) | 0.059 | 0.023 |
J4(x106) | -935.314 | 0.037 |
J5 (x106) | -0.224 | 0.054 |
J6(x106) | 86.34 | 0.087 |
J7(x106) | 0.108 | 0.122 |
J8(x106) | -14.624 | 0.205 |
J9 (x106) | 0.369 | 0.26 |
J10 (x106) | 4.672 | 0.42 |
J11(x106) | -0.317 | 0.458 |
J12(x106) | -0.997 | 0.672 |
Ring mass (MM) | 0.41 | 0.13 |
Table 2 Comparison of observed and calculated gravitational harmonics (un-normalized; reference radius 60330 km) [PDF].
Where two values are given they denote the minimum and maximum values from the suite of models. The physical models in column 3 match the observed J
2 and J
4 in Table 1, over a parameter space considering ranges of S
met, Y
mol, Z
mol, r
c and rotation periods from 10h32m44s to 10h47m06s. For the same span of rotation periods, column 4 reports a wider range from models that match only J
2 and allow for density modifications assuming r
c = 0.2. For J
6-J
10, the discrepancy between measurements and uniform rotation models is large for all models that assume uniform rotation. Column 5 shows a representative model with DR on cylinders and a deep rotation period of 10h39m22s that matches measurements from J
2 to J
10.
| Measurements | Physical models with uniform rotation | Uniform rotation model with modified density profiles | Physical model with differential rotation |
J2 | 16290.573 ± 0.028 | 16290.57 | 16290.57 | 16290.573 |
J4 | -935.314 ± 0.037 | -935.31 | -990.12 | -902.93 | -935.312 |
J6 | 86.340 ± 0.087 | 80.74 | 81.76 | 75.69 | 90.42 | 86.343 |
J8 | -14.624 ± 0.205 | -8.96 | -8.7 | -10.26 | -7.97 | -14.616 |
J10 | 4.672 ± 0.420 | 1.08 | 1.13 | 0.97 | 1.33 | 4.677 |
Table 3 Contribution to the higher gravity harmonics ΔJ8 and ΔJ10 resulting from differential rotation and thermal-wind optimization. [PDF]
The deviation (Column 1) is the difference between the measured J
8 and J
10 (Table 1) and the average of the computed values from the 11 CMS models with uniform rotation (Table 2). Two optimizations are shown: one without latitudinal truncation of the zonal flow, resulting in the reconstructed zonal wind profile shown in Fig. 4A and with a flow depth of 9363 km (Column 2), and the second with the flows truncated at latitude 60° (Fig. 4B) and a flow depth of 8832 km (Column 3). Columns 4 and 5 show the deviations calculated with the thermal-gravity equation (48) for similar wind profiles. The solutions from thermal wind are closer to the measurement because the optimization was done using the thermal wind method, but the thermal-gravity solutions also match the observations within 10%.
| Deviation | Thermal-wind solution | Thermal-wind solution truncated at latitude 60° | Thermal-gravity solution | Thermal-gravity solution truncated at latitude 60° |
ΔJ8 | -5.600 ± 0.205 | -5.624 | -5.533 | -5.758 | -5.759 |
ΔJ10 | 3.528 ± 0.659 | 3.570 | 3.66 | 3.974 | 4.037 |
R. A. Jacobson et al.,
The Gravity Field Of The Saturnian System From Satellite Observations And Spacecraft Tracking Data.
Astronomical J., 132, 2520-2526. (2006) [DOI:
10.1086/508812]
Table 3: Saturnian System Gravity Field from Jacobson et al. [PDF]
Parameter
| Null et al. (1981) | Campbell & Anderson (1989)
| Jacobson (2004)
| This Paper
|
GMSun/GMsys... |
3498.09 ± 0.22 |
3497.898 ± 0.018 |
3497.893 ± 0.005 |
3497.9018 ± 0.0001 |
GM (km3 s-2)... |
|
|
|
|
System... |
37938544.0 ± 2400.0 |
37940630.0 ± 200.0 |
37940672.0 ± 59.0 |
37940585.2 ± 1.1 |
Saturn... |
37929085.0 ± 2400.0 |
37931272.0 ± 200.0 |
37931284.0 ± 57.0 |
37931207.7 ± 1.1 |
Mimas... |
2.50± 0.06a |
2.50 ± 0.06a |
2.55 ± 0.05 |
2.5023 ± 0.0020 |
Enceladus... |
4.9± 2.4b |
4.9 ± 2.4b |
6.9 ± 1.5 |
7.2096 ± 0.0067 |
Tethys... |
41.5 ± 0.8a |
45.0 ± 10.0 |
41.21 ± 0.08 |
41.2097 ± 0.0063 |
Dione... |
70.2 ± 2.2b |
70.2 ± 2.2b |
73.12 ± 0.02 |
73.1127 ± 0.0025 |
Rhea... |
151.0 ± 34.0 |
154.0 ± 4.0 |
155.0 ± 5.0 |
153.9416 ± 0.0049 |
Titan... |
9059.0 ± 114.0 |
8978.2 ± 1.0 |
8978.1 ± 0.8 |
8978.1356 ± 0.0039 |
Hyperion... |
1.1 |
0 |
0.72 ± 0.35 |
0.3727 ± 0.0045 |
Iapetus... |
129.0 ± 49.0 |
106.0 ± 10.0 |
130.0 ± 17.0 |
120.5117 ± 0.0173 |
Phoebe... |
... |
... |
0.5 ± 0.2 |
0.5534 ± 0.0006 |
J2(×106)... |
16299.0 ± 18.0 |
16298.0 ± 10.0 |
16292.0 ± 7.0 |
16290.71 ± 0.27 |
J4(×106)... |
-916.0 ± 38.0 |
-915.0 ± 40.0 |
-931.0 ± 31.0 |
-935.83 ± 2.77 |
J6(×106)... |
81 |
103.0 ± 50.0 |
91.0 ± 31.0 |
86.14 ± 9.64 |
J8(×106)... |
... |
-10.0c |
-10.0c |
-10.0c |
αp (deg)... |
40.6076 ± 0.0230a |
40.580 ± 0.016d |
40.5955 ± 0.0036e |
40.58279 ± 0.00201f |
δp (deg)... |
83.5219 ± 0.0036a |
83.540 ± 0.002d |
83.5381 ± 0.0002e |
83.53763 ± 0.00021f |
αp (deg century-1)... |
... |
... |
-0.04229g |
-0.04229g |
δp (deg century-1)... |
... |
... |
-0.00444g |
-0.00444g |
NOTE.—Reference radius for the gravitational harmonics: 60,330 km.
a Adopted from Kozai (1957).
b Adopted from Kozai (1976).
c Theoretical estimate used by Nicholson & Porco (1988).
d Adopted from Simpson et al. (1983).
e At epoch 1980 November 12, 23:46:32, from French et al. (1993).
f At epoch 2000 January 1, 12:00:00.
g Derived from the precession rate of Nicholson et al. (1999).
Table 4: Physical Properties from Jacobson et al. [PDF]
Body
| Radius (km)
| Mass (1022g)
| Density (g/cm3)
|
Saturn... |
58232.0 ± 6.0a |
56832592.0 ± 8515.0 |
0.6873 ± 0.0002 |
Mimas... |
198.30 ± 0.30b |
3.7493 ± 0.0031 |
1.1479 ± 0.0053 |
Enceladus... |
252.10 ± 0.10b |
10.8022 ± 0.0101 |
1.6096 ± 0.0024 |
Tethys... |
533.00 ± 0.70b |
61.7449 ± 0.0132 |
0.9735 ± 0.0038 |
Dione... |
561.70 ± 0.45b |
109.5452 ± 0.0168 |
1.4757 ± 0.0036 |
Rhea... |
764.30 ± 1.10b |
230.6518 ± 0.0353 |
1.2333 ± 0.0053 |
Titan... |
2575.50 ± 2.00c |
13452.0029 ± 2.0155 |
1.8798 ± 0.0044 |
Hyperion... |
133.00 ± 8.00d |
0.5584 ± 0.0068 |
0.5667 ± 0.1025 |
Iapetus... |
735.60 ± 1.50b |
180.5635 ± 0.0375 |
1.0830 ± 0.0066 |
Phoebe... |
106.60 ± 1.00e |
0.8292 ± 0.0010 |
1.6342 ± 0.0460 |
a Lindal et al. (1985).
b Thomas et al. (2006).
c Lindal et al. (1983).
d Thomas et al. (1995).
e Porco et al. (2005b).
Shape of Saturn
Data and higher order products related to the shape of
Saturn's "surface" can be found here. Key instruments contributing to this topic are:
RSS and
UVIS.
The seminal paper defining the Shape of Saturn is Lindal, et al. (1985). In this paper, the equatorial and polar radius at 100 mbar are given as 60367 km and 54438 km, respectively. The equatorial and polar radius at 1 bar are given as 60268 km and 54364 km, respectively.
Lindal, et al., The Atmosphere Of Saturn: An Analysis Of The Voyager Radio Occultation Measurements. Astronomical J., 90, 1136-1146. (1985)
Cassini used the NAIF reference ellipsoid. The values used for the equatorial and polar radii for 1 bar are given as 60268 km and 54364 km, respectively. A reference sphere of 60330 km was also used for 100 mbar in the planning.
The shape of Saturn is more complex than what a simple ellipsoid represents. Engineering models used by the Cassini Project used gravitational parameters, zonal winds and rotation rates known at the time to generate a surface represented by a series of Legendre polynomials.
Anderson...
Saturn Shape Data
Interior models/graphics should go here
Rotation Rate
Information on what we know of Saturn's unknown rotation rate can be found here. Key instruments contributing to this topic are:
MAG,
RPWS,
RSS, and
VIMS.
Key Review Books
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds) Cambridge University Press, 2018.
- The mysterious periodicities of Saturn: Clues to the rotation rate of the planet. Carbary, J. F., Hedman, M. M., Hill, T. W., Jia, X., Kurth, W., Lamy, L., and Provan, G.
Key Review Publications
Mankovich, C., et al., 2019. Cassini Ring Seismology as a Probe of Saturn's Interior. I. Rigid Rotation. Mankovich, C., et al., 2019. Astrophysical J., 871:1 (15pp). https://doi.org/10.3847/1538-4357/aaf798
Note: This study yielded a period of rotation of Saturn’s interior of P = 10h 33m 38s (+ 1m19s / -1m52s)
Atmospheric Properties
Cassini conducted a unique multi-seasonal tour over 13 years that utilized an unprecedented range of viewing geometries and multi-wavelength studies to provide a plethora of new insights into the thermal, haze/cloud, and gaseous structure of the planet and their seasonal variability. The wide variety of orbital inclinations repeatedly achieved by the Cassini orbiter - from equatorial to nearly polar - provided direct and repeated viewing of all latitudes during the mission, from the poles to the equator by its broad array of synergistic instruments that spanned wavelengths from the UV to the far infrared. Science objectives included:
- Determine temperature field, cloud properties, and composition of the atmosphere of Saturn.
- Observe seasonal changes in the winds at all accessible altitudes coupled with simultaneous observations of clouds, temperatures, composition, and lightning.
- Measure the spatial and temporal variability of trace gases and isotopes.
This section breaks these observations down into major sub-topics to help the user to focus in on what they might need.
Key Review Publications
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press, 2018.
- Saturn's seasonally changing atmosphere: Thermal structure, composition and aerosols. Fletcher, L. N., Greathouse, T. K., Guerlet, S., Moses, J. I., and West, R. A.
- Saturn's polar atmosphere. Sayanagi, K. M., Baines, K. H., Dyudina, U. A., Fletcher, L. N., Sanchez-Lavega, A., and West, R. A.
Reference Data
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn atmosphere by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as [XLSX] or [CSV]
Table of Time Periods with Atmospheric Property Observations
Segment Times, Movies, Legacy Packages and Visualizations
Vertical Pressure and Temperature Structure
Information pertaining to the pressure (i.e., pressure vs.
altitude) and temperature structure of Saturn's atmosphere are included in this section. Topics
include UV and IR occultations and vertical and 3D temperature profiles.
Key instruments contributing to this section are:
CIRS,
RSS,
UVIS, and
VIMS.
Key Review Publications
In
Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press, 2018.
- Saturn Variable Thermosphere. pp. 224-250. Strobel, D.F., Koskinen, T.T., Müller-Wodarg, I.
In
Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. pp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Vertical Pressure and Temperature Structure Data
Composition
Data sources and products relevant to the composition (both
molecular and haze/cloud composition) of Saturn's atmosphere are included in this section. Key
instruments contributing to this subject are
CIRS,
INMS,
MIMI,
RADAR,
RSS,
UVIS, and
VIMS.
Key Review Publications
In
Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press, 2018.
- Saturn’s Seasonally Changing Atmosphere. pp. 251-294. Fletcher, L.N., Greathouse, T.K., Guerlet, S., Moses, J.I., West, R.A.
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer 2009
- Saturn: Composition and chemistry. pp. 83 -112. Fouchet, T., Moses, J. I., and Conrath, B. J.
Additional Publications
- Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 µm nightside spectroscopy.
Icarus 214, 510-533
Fletcher, L. N., Baines, K. H., Momary, T. W., Showman, A., Irwin, P. G. J., Orton, G. S.,
Roos-Serote, M., and Merlet, C. (2011).
- Cloud clearing in the wake of Saturn's Great Storm of 2010-2011 and suggested new constraints on Saturn's He/H2 ratio.
Icarus 276, 141-162
Sromovsky, L. A., Baines, K. H., Fry, P. M., and Momary, T. W. (2016).
Zonal and Meridonial Temperature Fields
This section highlights the latitudinal and longitudinal
temperature fields for noting seasonal variations and dynamical changes.
Key instruments contributing to this section are:
CIRS and
VIMS.
Key Review Publications
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. pp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Additional Publications
- Thermal structure and dynamics of Saturn's northern springtime disturbance.
Fletcher, L. N., Hesman, B. E., Irwin, P. G. J., Baines, K. H., Momary, T. W., Sanchez-Lavega, A., Flasar, F. M., Read, P. L., Orton, G. S., Simon-Miller, A., Hueso, R., Bjoraker, G.,
Marmoutkine. A, del Rio-Gaztelurrutia, T., Gomez, J. M., Brown, R. H., Buratti, B., Clark, R. N., Nicholson, P. D., and Sotin, C. (2011).
Zonal and Meridionial Temperature Field Data
Clouds and Haze: Zonal Structure and Properties
This section highlights the data relevant to the zonal cloud and haze
structure within Saturn's atmosphere. This includes both visual imaging
and spectroscopic data. Key instruments contributing to this section
are:
ISS,
UVIS, and
VIMS.
Key Review Publications
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Clouds and aerosols in Saturn's atmosphere. pp. 161-179. West, R. A., Baines, K. H., Karkoschka, E., and Sánchez-Lavega, A.
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press 2018
- The Great Storm of 2010-2011.
Sánchez-Lavega, A., Fisher, G., Fletcher, L. N., García-Melendo, E.,
Hesman, B., Perez-Hoyos, S., Sayanagi, K. M., and Sromovsky, L. A.
- Saturn's polar atmosphere. Sayanagi, K. M., Baines, K. H., Dyudina, U. A., Fletcher, L. N., Sánchez-Lavega, A., and West, R. A.
Additional Publications
- Saturn's thermal emission at 2.2-cm wavelength as imaged by the Cassini radar radiometer.
Icarus 226, 522-535.
Janssen, M. A., Ingersoll, A. P., Allison, M. D., Gulkis, S., Laraia, A. I., Baines, K. H., Edgington, S. G.,
Anderson, Y. Z., Kelleher, K., and Oyafuso, F. (2013).
- Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS.
J. Geophys. Res. 114, E04007, doi:10.1029/2008JE003254
Choi, D. S., Showman, A. P., and Brown, R. H. (2009).
- Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 µm nightside spectroscopy.
Icarus 214, 510-533
Fletcher, L. N., Baines, K. H., Momary, T. W., Showman, A., Irwin, P. G. J., Orton, G. S.,
Roos-Serote, M., and Merlet, C. (2011).
- Saturn's Great Storm of 2010-2011: Evidence for ammonia and water ices from analysis of VIMS spectra.
Icarus 226, 402-418
Sromovsky, L. A., Baines, K. H., and Fry, P. M. (2013).
- Cloud clearing in the wake of Saturn's Great Storm of 2010-2011 and suggested new constraints on Saturn's He/H2 ratio.
Icarus 276, 141-162
Sromovsky, L. A., Baines, K. H., Fry, P. M., and Momary, T. W. (2016).
Seasonal Variation of Atmospheric Properties
Data relevant to seasonal variations within Saturn's atmosphere are included in this section.
Some of the material included here will overlap with other sections on this website.
Key instruments contributing to this subject
section are:
CIRS,
ISS,
RSS,
UVIS,
and
VIMS.
Key Publications
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press, 2018.
- Saturn’s Seasonally Changing Atmosphere. pp. 251-294. Fletcher, L.N., Greathouse, T.K., Guerlet, S., Moses, J.I., West, R.A.
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. ppp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Global Circulation and Dynamics
Sub-topics
Zonal Winds
Global Circulation and Convection
Seasonal Variation of Global Circulation and Dynamics
Polar Regions
2010-2012 Great Storm
Repeated multi-wavelength observations over a single or sometimes several rotations by ISS and VIMS allowed the motions of clouds to be measured, resulting in direct measurements of zonal winds at various altitudes that could be compared to the thermal wind structure derived from the temperature field measured by CIRS. Such observations were repeated throughout the 13-year orbital mission, providing insights into the seasonal variability of the zonal winds and their associated zonal wind shears.
The polar regions - including the uniquely shaped North Polar Hexagon - and the Great Storm of 2010-2011 provided fundamental new insights into the global circulation and local meteorology of the planet. Science objectives included:
- Measure the global wind field, including wave and eddy components; observe synoptic cloud features and processes.
- Investigate the sources and the morphology of Saturn lightning (Saturn Electrostatic Discharges (SED), lightning whistlers).
- Observe seasonal changes in the winds at all accessible altitudes coupled with simultaneous observations of clouds, temperatures, composition, and lightning.
- Observe the aftermath of the 2010-2011 storm. Study the life cycles of Saturn's newly discovered atmospheric waves, south polar hurricane, and rediscovered north polar hexagon.
- Monitor the planet for new storms and respond with new observations when the new storms occur.
Key Review Publications
In Saturn (Gehrels, T., Matthews, M. S, eds). Univ. Arizona Press, Tucson. (1984)
- Structure and dynamics of Saturn's atmosphere. pp. 195-238. Ingersoll, A. P., Beebe, R. F., Conrath, B. J., and Hunt, G. E.
In Saturn from Cassini-Huygens (M. K. Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn atmospheric structure and dynamics, pp. 113-159. Del Genio, A. D., Achterberg, R. K., Baines, K. H., Flasar, F. M., Read, P. L., Sánchez-Lavega, A., and
Showman, A. P.
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. in press. (2018)
-
The global atmospheric circulation of Saturn. Showman, A. P., Ingersoll, A. P., Achterberg, R., and Kaspi. Y.
Reference Data
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn's Dynamics by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as
[XLSX] or
[CSV]
Table of Time Periods with Circulation and Dynamics Observations
Segment Times, Movies, Legacy Packages and Visualizations
Zonal Winds
Determination of zonal wind speeds at various pressure levels in the atmosphere are included in this section. Key instruments that contributed to this
topic are:
ISS,
VIMS and
CIRS.
Key Publications
In
Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. pp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Additional Publications
- Cloud features and zonal wind measurements of Saturn's atmosphere as observed by Cassini/VIMS. J. Geophys. Res. 114, E04007,
Choi, D. S., Showman, A. P., and Brown, R. H. (2009). doi:10.1029/2008JE003254
- Saturn's zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus, 215, 62-74,
García-Melendo, E., S. Pérez-Hoyos, A. Sánchez-Lavega, R. Hueso (2011).
- Saturn's Global Zonal Winds Explored by Cassini/VIMS 5-µm Images. Geophysical Research Letters, 45, 6823-6831.
Studwell A., L. Li , X. Jiang , K.H. Baines , P.M. Fry, T.W. Momary , and U.A. Dyudina (2018) doi:10.1029/2018GL078139
Zonal Winds vs. Latitude (ISS) The zonal winds provided below from the analysis of Garcia-Melendo, et al. (2011)
Zonal Winds at 2 bars vs. Latitude (VIMS) See Saturn’s Global Zonal Winds Explored by Cassini/Vims 5μ Images, A Studwell, et al., Geophysical Research Letters, Volume 45, Issue 14, pp. 6823 - 6831, DOI
10.1029/2018GL078139
Global Circulation and Convection
Global circulation and energy budget of Saturn's atmosphere are included in this section. Instruments contributing to this study are:
CIRS,
ISS,
UVIS,
VIMS.
Key Review Publications
In
Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. in press. (2018)
- The global atmospheric circulation of Saturn. Showman, A. P., Ingersoll, A. P., Achterberg, R., and Kaspi. Y.
In
Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. pp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Additional Publications
- Constraints on Saturn's tropospheric general circulation from Cassini ISS images.
Icarus, 219, 689-700.
Del Genio, A. D., and Barbara, J. M., (2012).
- Emitted power of Jupiter based on Cassini CIRS and VIMS observations.
JGR-Planets, doi:10.1029/2012JE004191
Li, L., Baines, K. H., Smith, M. A., West, R. A., Pérez-Hoyos, S., Trannell, H. J., Simon-Miller, A. A.,
Conrath, B. J., Orton, G. S., Nixon, C. A., Filacchione, G., Fry, P,. M., and Momary, T. W (2012)
- Cassini imaging science: Initial results on Saturn's atmosphere.
Science 307, 1243-1247.
Porco, C. C. et al. (2005).
- Cassini imaging of Saturn: Southern-hemisphere winds and vortices. J. Geophys. Res., 111, E05004(E10), 1-13.
Vasavada, A. R., Hörst, S. M., Kennedy, M. R., Ingersoll, A. P., Porco, C. C., Del Genio, A. D. and West, R. A. (2006).
- Saturn momentum fluxes and convection: First estimates from Cassini images. Icarus 189, 479-492
Del Genio, A. D. et al. (2007)
Seasonal Variation of Global Circulation and Dynamics
Many changes in the visible atmosphere of Saturn can be traced back to seasonal variations. This section focuses on its attention on solar and seasonally driven phenomena. Instruments contributing to this study are:
CIRS,
ISS,
UVIS,
VIMS.
Key Publications
In
Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Saturn Atmospheric Structure and Dynamics. pp. 113 -160. Del Genio, A.D., Achterberg, R.K., Baines, K.H., Flasar, F.M., Read, P.L., Sánchez-Lavega, A. and Showman, A.P.
Polar Regions
Dynamics and phenomena occurring near the vicinity of both north and south poles of the planet are included in this section. Instruments contributing to this study are:
CIRS, ISS, UVIS,
VIMS.
Key Review Publications
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. in press. (2018)
-
Saturn's polar atmosphere. Sayanagi, K. M., Baines, K. H., Dyudina, U. A., Fletcher, L. N., Sanchez-Lavega, A., and West, R. A.
Additional Publications
-
Cassini ISS observation of Saturn’s north polar vortex and comparison to the south polar vortex..
Icarus 202, 240-248. Sayanagi, K. M., Blalock, J. J., Dyudina, U. A., Ewald, S. P., and Ingersoll, A. P. (2009).
-
Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS.
Planetary and Space Sci. 57, 1671-1681.
doi:10.1016/j.pss.2009.06.026
Baines, K. H., Momary, T. W., Fletcher, L. N., Showman, A. P., Roos-Serote, M., Brown, R. H.,
Buratti, B. J., Clark, R. N., and Nicholson, P. D. (2009).
-
Saturn's south pole vortex compared to other large vortices in the solar system.
Icarus 202, 240-248.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Vasavada, A. R., West, R. A., Baines, K. H., Momary, T.
W., Del Genio, A. D., Barbara, J. M., Porco, C. C., Achterberg. R. K., Flasar, F. M., Simon-Miller, A. A., and Fletcher, L. N. (2009).
2010-2012 Great Storm
Once every 20-30 years, Saturn erupts with planet-wide storms. Cassini was there to see this rare event up-close and personal. Instruments contributing to this study are:
CIRS,
ISS,
RADAR,
RPWS,
UVIS,
VIMS.
Measurements of CH4 and H2 were used to retrieve temperature profiles inside the storm region.
Key Publications
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. in press. (2018)
-
The Great Storm of 2010-2011. Sánchez-Lavega, A., Fisher, G., Fletcher, L. N., García-Melendo, E., Hesman, B., Perez-Hoyos, S., Sayanagi, K. M., and Sromovsky, L. A.
Additional Publications
- Saturn's Great Storm of 2010-2011: Evidence for ammonia and water ices from analysis of VIMS spectra.
Icarus 226, 402-418
Sromovsky, L. A., Baines, K. H., and Fry, P. M. (2013).
- Cloud clearing in the wake of Saturn's Great Storm of 2010-2011 and suggested new constraints on Saturn's He/H2 ratio.
Icarus 276, 141-162
Sromovsky, L. A., Baines, K. H., Fry, P. M., and Momary, T. W. (2016).
- Dynamics of Saturn's great storm of 2010-2011 from Cassini ISS and RPWS.
Icarus, 223, 460-478.
Sayanagi, K. M., Dyudina, U. A., Ewald, S. P., Fischer, G., Ingersoll, A. P., Kurth, W. S.,
Muro, G. D., Porco, C. C., and West, R. A. (2013).
- Cassini ISS observation of Saturn's string of pearls.
Icarus, 229, 170-180.
Sayanagi, K. M., U. A. Dyudina, U. A., S. P. Ewald, S. P., G. D. Muro, G. D., and Ingersoll, A. P. (2014).
- Thermal structure and dynamics of Saturn's northern springtime disturbance.
Science 332, 1413-1417.
Fletcher, L. N., Hesman, B. E., Irwin, P. G. J., Baines, K. H., Momary, T. W., Sanchez-Lavega, A.,
Flasar, F. M., Read, P. L., Orton, G. S., Simon-Miller, A., Hueso, R., Bjoraker, G.,
Marmoutkine. A, del Rio-Gaztelurrutia, T., Gomez, J. M., Brown, R. H., Buratti, B.,
Clark, R. N., Nicholson, P. D., and Sotin, C. (2011).
Auroral Observations
Auroras on Saturn occur in a process similar to Earth's northern and
southern lights. Particles from the solar wind are channeled by Saturn's
magnetic field toward the planet's poles, where they interact with
electrically charged gas (plasma) in the upper atmosphere and emit
light. At Saturn, however, auroral features can also be caused by
electromagnetic waves generated when the planet's moons move through the
plasma that fills Saturn's magnetosphere.
Science objectives includes
- Observe the magnetosphere, ionosphere, and aurora as they change on all time scales—minutes to years—and are affected by seasonal and solar cycle forcing. Here the focus is on contributions from optical remote sensing instruments:
CIRS, ISS, UVIS, and VIMS.
Key Review Publications
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Auroral Processes. pp. 333-374.
Kurth, W.S., Bunce, E.J., Clarke, J.T., Crary, F.J., Grodent, D.C.,
Ingersoll, A.P., Dyudina, U.A., Lamy, L., Mitchell, D.G., Persoon, A.M.,
Pryor, W.R., Saur, J., and Stallard, T.
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press. (2018)
- Saturn's Aurora. Stallard, T., Badman, S., Dyudina, U., Grodent, D., and Lamy, L.
Additional Publications
- Auroral Storm and Polar Arcs at Saturn—Final Cassini/UVIS Auroral Observations. Palmaerts, B., Radioti, A., Grodent, D., Yao, Z. H., Bradley, T. J., Roussos, E., Lamym, L., Bunce, E.J. , Cowley, S.W.H., Krupp, N., Kurth, W.S., Gérard, J.-C., Pryor, W.R. .
Geophysical Research Letters, 45, 6832-6842, 2018
https://doi.org/10.1029/2018GL078094
- Saturn’s northern aurorae at solstice from HST observations coordinated with Cassini’s grand finale. Lamy, L., Prangé, R., Tao, C., Kim, T., Badman, S. V., Zarka, P., Cecconi, B., Kurth, W.S., Pryor, W., Bunce, E., and Radioti, A.
Geophysical Research Letters, 45, 9353–9362, 2018.
https://doi.org/10.1029/2018GL078211
- Complex structure within Saturn's infrared aurora.
Nature, 456, 214-216.
Stallard, T., Miller, S., Lystrup, M., Achilleos, N., Bunce, E. J., Arridge, C. S., Dougherty, M. K.,
Cowley, S. W. H., Badman, S. V., Talboys, D. L., Brown, R. H., Baines, K. H., Buratti, B. J.,
Clark, R. N., Sotin, C. S., Nicholson, P. D., and Drossart, P. D. (2008).
- Cassini VIMS observations of latitudinal and hemispheric variations
in Saturn's infrared auroral intensity.
Icarus 216, 367-375., doi:10.1016/j.icarus.2011.09.031
Badman, S. V., Tao, C., Grocott, A., Kasahara, S., Melin, H., Brown, R. H., Baines, K. H., Fujimoto, M.,
and Stallard, T. (2011).
Auroral Data
Auroral Observation Reference Tables
Processed data
Reference Data
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn Aurorae by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as
[XLSX] or
[CSV]
Table of Time Periods with Auroral Observations
Segment Times, Movies, Legacy Packages and Visualizations
Ancillary Data
- The Magnetospheric Science page references a variety of magnetic field models, which may be used in conjunction with the remote-sensing measurements to relate the interactions of ions with the magnetic field.
- SPICE
geometry information is important to correct the alignment of the
atmosphere with the observations and with alignment to the magnetic
field lines.
When performing an analysis of Aurorae, it is may be useful to visualize
the visible-spectra data with SPICE geometry data in order to align the
data with Saturn's atmosphere. The built-in backplane (geometry) data
for some data sets like VIMS can be made more accurate using SPICE to
indicate the atmospheric "height" from the typical one-bar surface.
Ionosphere and Magnetic Fields
This section focuses on observations of the ionosphere and magnetic
field and subsequent plasma measurements. Key instruments contributions
made by
INMS,
MAG,
MIMI,
RPWS,
RSS.
Cassini has a variety of instruments to study Saturn's magnetic field and associated plasma interactions. Information on ionosphere studies can be found below; please see the
Cassini Magnetospheric Science page for other information.
Mission Objective
- Study the diurnal variations and magnetic control of the ionosphere of Saturn.
Key Publications
In Saturn from Cassini-Huygens (M.Dougherty, L. W. Esposito, and S. M. Krimigis, Eds). Springer (2009)
- Upper atmosphere and ionosphere of Saturn.
pp. 181-291. Nagy, A. F., Kliore, A. J., Mendillo, M., Miller, S.,
Moore, L., Moses, J. I., Müller-Wodarg, I., and Shemansky, D.
In Saturn in the 21st Century (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds). Cambridge University Press 2018
- Saturn's ionosphere. Moore, L., Galand, M., Kliore, A. J., Nagy, A. F., and O'Donoghue, J.
- Saturn's variable thermosphere. Strobel, D. F., Koskinen, T., and Müller-Wodarg, I.
Additional Publications
- The domination of Saturn's low latitude ionosphere by ring rain.
Nature 496, 193-195.
O'Donoghue, J., Stallard, T. S., Melin, H., Jones, G. H., Cowley, S. W. H., Miller, S., Baines, K. H.,
and Blake, J. S. D. (2013).
Derived Data
Ancillary Data
- The Magnetic Field Model [CSV download] is used in conjunction with the optical measurements to relate the interactions of ions with the magnetic field.
- SPICE
geometry information is important to correct the alignment of the
atmosphere with the observations and with alignment to the magnetic
field lines.
Reference Data
- Observations from Saturn Observation Guide [CSV]
- Event Calendar provides a search interface to find Saturn observations focused on Saturn Ionosphere and Magnetosphere, or other science topics
Saturn Segment Table
The table below outlines the Saturn observation segments related to Saturn's Ionosphere and Magnetosphere by name, start time, and end time, with links to segment movies (where available), legacy packages, and timeline visualizations.
Also available to download as
[XLSX] or
[CSV]
Table of Time Periods with Ionosphere and Magnetosphere Observations
Segment Times, Movies, Legacy Packages and Visualizations
Ionosphere Structure
Materials related to ionospheric structure can be found here. The key instruments contributing to this subject are: RSS and UVIS
A Key Publication
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds) Cambridge University Press, 2018.
- Saturn’s Ionosphere. L Moore, M. Galand, A.J. Kliore, A.F. Nagy, J. O’Donogue.
The ionospheres – thermospheres of the giant planets. Majeed, T., J. Waite, S. Bougher, R. Yelle, G. Gladstone, J. McConnell, and A. Bhardwaj, Adv. Sp. Res., 33(2), 197–211, 2004
https://doi:10.1016/j.asr.2003.05.009.
Additional Publications
In Saturn, University of Arizona Press, Tucson, AZ, 1984.
- Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn, Atreya, S. K., T. M. Donahue, A. F. Nagy, J. H. Waite Jr., and J. C. McConnell, pp. 239–277.
The ionospheres–thermospheres of the giant planets. Majeed, T., J. Waite, S. Bougher, R. Yelle, G. Gladstone, J. McConnell, and A. Bhardwaj, Adv. Sp. Res., 33(2), 197–211, 2004 https://doi:10.1016/j.asr.2003.05.009.
In Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, Cambridge University Press, Cambridge. 2010.
- Jupiter’s Thermosphere and Ionosphere Yelle, R. V, and S. Miller , pp. 185–218
In Saturn from Cassini-Huygens, edited by M. K. Dougherty, L. W. Esposito, and S. M. Krimigis, pp. 181–201, Springer Netherlands, Dordrecht, 2009.
- Upper Atmosphere and Ionosphere of Saturn, Nagy, A. F., A. J. Kliore, M. Mendillo, S. Miller, L. Moore, J. I. Moses, I. Müller-Wodarg, and D. Shemansky , pp. 181–201.
In Ionospheres:Physics, Plasma Physics, and Chemistry, 2nd ed., Cambridge University Press, Cambridge, UK, 2009/
- Upper Atmosphere and Ionosphere of Saturn, Schunk, R. W., and A. F. Nagy, pp. 181–201
Magnetic Field Structure
Materials related to the formation and subsequent morphology
of Saturn's interior magnetic field can be found here. The key instrument contributing to this subject is:
MAG.
Key Review Publications
In Saturn in the 21st Century. (K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard, Eds) Cambridge University Press, 2018.
- The mysterious periodicities of Saturn: Clues to the rotation rate of the planet. Carbary, J. F., Hedman, M. M., Hill, T. W., Jia, X., Kurth, W., Lamy, L., and Provan, G.
- Saturn's magnetic field and dynamo. Christensen, U. R., Cao, H., Dougherty, M., Khurana, K.
- Model of Saturn's internal planetary magnetic field based on Cassini observations. Burton, M.E., M.K. Dougherty, and C.T. Russell. Planetary and Space Sciences, 57, 1706-1713. (2009)
- Saturn's magnetic field revealed by the Cassini Grand Finale Dougherty, M.K., H. Cao, K.K. Khurana, G.J. Hunt, G. Provan, S. Kellock, M.E. Burton, T.A. Burk, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, C.T. Russell, D.J. Southwood, Science, 362, Issue 6410, id.aat5434 (2018) [DOI: 10.1126/science.aat5434]
Interior Magnetic Field Data
Ƒrom Saturn's magnetic field revealed by the Cassini Grand Finale, Dougherty, M.K., H. Cao, K.K. Khurana, G.J. Hunt, G. Provan, S. Kellock, M.E. Burton, T.A. Burk, E.J. Bunce, S.W.H. Cowley, M.G. Kivelson, C.T. Russell, D.J. Southwood, Science, 362, Issue 6410, id.aat5434 (2018) [DOI: 10.1126/science.aat5434]
Table 1 Gauss coefficients of a new model for Saturn’s internal magnetic field, which we refer to as the Cassini 11 model, constructed from nine orbits of Cassini Grand Finale MAG data with regularized inversion.
The reported uncertainty is five times the formal uncertainties associated with the chosen regularization (Methods).
Gauss coefficient | Value (nT) | Uncertainty (nT) |
g10 | 21140.2 | 1 |
g20 | 1581.1 | 1.2 |
g30 | 2260.1 | 3.2 |
g40 | 91.1 | 4.2 |
g50 | 12.6 | 7.1 |
g60 | 17.2 | 8.2 |
g70 | –59.6 | 8.1 |
g80 | –10.5 | 8.7 |
g90 | –12.9 | 6.3 |
g100 | 15 | 7 |
g110 | 18.2 | 7.1 |
g120 | 0.3 | 7.7 |
RMS residual | 6.2 | |
In the Research Article “Saturn’s magnetic field revealed by the Cassini Grand Finale,” a copyediting error led to the inadvertent omission of the sign of the value for Gauss coefficient g
70 in Table 1 online. The correct value is –59.6. The online version has been corrected. In addition, the authors corrected three supplementary figure callouts on p. 6 and an in-text citation on p. 7.